Regularized equilibrium problems in Banach spaces
Main Article Content
Abstract
Article Details
References
[1] A. S. Antipin, Iterative gradient prediction-type methods for computing fixed point of extremal mappings, In: J. Guddat, H. Th. Jonden, F. Nizicka, G. Still, F. Twitt (eds) Parametric Optimization and Related Topics IV[C], pp. 11–24. Peter Lang, Frankfurt (1997). Google Scholar
[2] C. Baiocchi and A. Capelo, Variational and Quasi Variational Inequalities, John Wiley and Sons, New York, 1984. Google Scholar
[3] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), 123–145. Google Scholar
[4] X. P. Ding, Auxiliary principle and algorithm for mixed equilibrium problems and bilevel mixed equilibrium problems in Banach spaces, J. Optim. Theory Appl. 146 (2010), 347–357, Doi 10.1007/s10957-010-9651-z. Google Scholar
[5] F. H. Clarke, Y. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer-Verlag, New York, NY, 1998. Google Scholar
[6] F. Giannessi and A. Maugeri, Variational Inequalities and Network Equilibrium Problems, Kluwer Acad. Pub. Dordrecht. 2000. Google Scholar
[7] F. Giannessi, A. Maugeri and P. M. Pardalos, Equilibrium Problems:Nonsmooth Optimization and Variational Inequality Models, Kluwer Acad. Pub. Dordrecht. 2001. Google Scholar
[8] R. Glowinski, J. L. Lion and R. Tremolieres, Numerical Analysis of Variational Inequalities, North Holland, Amsterdam, Holland 1981. Google Scholar
[9] J. K. Kim, A. Farajzadeh and Salahuddin, New systems of extended nonlinear regularized nonconvex set valued variational inequalities, Communication on Applied Nonlinear Analysis 21 (3) (2014), 21–40. Google Scholar
[10] M. A. Noor, Regularized mixed quasi equilibrium problems, J. Appl. Math. Com- put. 23(2007), 183–191. Google Scholar
[11] R. A. Poliquin, R. T. Rockafellar and L. Thibault, Local differentiability of distance functions, Trans. Amer. Math. Soc. 352 (2000), 5231–5249. Google Scholar
[12] Salahuddin, Nonlinear regularized nonconvex random variational inequalities with fuzzy event in q-uniformly smooth Banach space, J. Applied Functional Analysis 10 (1-2) (2015), 40–52. Google Scholar
[13] R. U. Verma and Salahuddin, A new class of nonlinear regularized nonconvex system of variational inequalities in Banach spaces, Transactions on Mathemat- ical Programming and Applications 2 (5) (2014), 1–14. Google Scholar
[14] W. Takahashi, Nonlinear variational inequalities and fixed point theorems , J. Math. Soc. Japan. 28 (1976), 168–181. Google Scholar
[15] H. -K. Xu, Inequalities in Banach spaces with applications, Nonlinear Analy- sis,TMA, 16 (12) (1991), 1127–1138. Google Scholar