Riesz projections for a non-hyponormal operator
Main Article Content
Abstract
J. G. Stampfli proved that if a bounded linear operator $T$ on a Hilbert space $\mathscr H$ satisfies ($G_1$) property, then the Riesz projection $P_{\lambda}$ associated with $\lambda\in{\rm iso}\sigma(T)$ is self-adjoint and $P_{\lambda}\mathscr{H}=(T - \lambda)^{-1}(0)=(T^{*} - \bar{\lambda})^{-1}(0)$.
In this note we show that Stampfli's result is generalized to an nilpotent extension of an operator having ($G_1$) property.
Article Details
References
[1] M. Cho and K. Tanahashi, Isolated points of the spectrum of p-hyponormal and log-hyponormal operators, Integr. Equat. Oper. Th. 43 (2002), 379–384. Google Scholar
[2] B. P. Duggal, Riesz projections for a class of Hilbert space operators, Linear Algebra Appl. 407 (2005), 140–148. Google Scholar
[3] B. P. Duggal, Hereditarily normaloid operators, Extracta Math. 20 (2005), 203– 217. Google Scholar
[4] Y. M. Han and A.-H. Kim, A note on ⋆-paranormal operators, Integr. Equat. Oper. Th. 49 (2004), 435–444. Google Scholar
[5] J. K. Han, H. Y. Lee and W. Y. Lee, Invertible completions of 2 ×2 upper triangular operator matrices, Proc. Amer. Math. soc. 128 (2000), 119–123. Google Scholar
[6] Y. M. Han, J. I. Lee and D. Wang, Riesz idempotents and Weyl’s theorem for Google Scholar
[7] w-hyponormal operators, Integr. Equat. Oper. Th. 53 (2005), 51–60. Google Scholar
[8] H. G. Heuser, Functional Analysis, John Wiley, New York, 1982. Google Scholar
[9] M. Mbekhta, G en eralisation de la d ecomposition de Kato aux op erateurs paranormaux et spectraux, Glasgow Math. J. 29 (1987), 159-175. Google Scholar
[10] M. Oudghiri, Weyl’s and Browder’s theorem for operators satisfying the SVEP, Studia Math. 163(2004) 85–101. Google Scholar
[11] C. Schmoeger, On isolated points of the spectrum of a bounded linear operator, Proc. Amer. Math. soc. 117 (1993), 715–719. Google Scholar
[12] J. G. Stampfli, Hyponormal operators, Pacific J. Math. 12 (1962), 1453–1458. Google Scholar
[13] J. G. Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math. Soc. 117 (1965), 469–476. Google Scholar
[14] A. Uchiyama, On the isolated points of the spectrum of paranormal operators, Integr. Equat. Oper. Th. 55 (2006), 145–151. Google Scholar