Finding the natural solution to $f(f(x)) = \exp(x)$
Main Article Content
Abstract
Article Details
References
[1] N. H. Abel, Untersuchung der Functionen zweier unabh ̈angig ver ̈anderlichen Gr ̈oßen x und y, wie f(x, y), welche die Eigenschaft haben, ..., Journal fu ̈r die reine und angewandte Mathematik, 1 (1826), 11–15. Google Scholar
[2] C. C. Cowen, Analytic solutions of B ̈ottcher’s functional equation in the unit disk, Aequationes Mathematicae 24 (1982), 187–194. doi:10.1007/BF02193043 Google Scholar
[3] P. Fatou, Sur les equations fonctionelles, Bull. Soc. Math. France 47 (1919), 161–271. Google Scholar
[4] E. Jabotinsky, Analytic iteration. Trans. Amer. Math. Soc., 108 (1963), 457– 477. Google Scholar
[5] H. Kneser, Reelle analytishe L ̈osungen der Gleichung φ(φ(x)) = ex und verwandter Funktionalgleichungen, J. reine angew. Math. 187 (1950), 56–67. Google Scholar
[6] G. Koenigs, Recherches sur les int egrales de certaines equations fonctionelles, Annales Scientifiques de l'E cole Normale Sup erieure, 1 (3, Suppl ement) (1884), 3-41. Google Scholar
[7] D. Kouznetsov, Solution of F (z + 1) = exp(F (z)) in the complex z-plane, Mathematics of Computation 78: 267 (2009), 1647–1670. Google Scholar
[8] M. Kuczma, B. Choczewski, and R. Ger, Iterative Functional Equations, Cambridge University Press, Cambridge, 1990. Google Scholar
[9] H. O. Peitgen and D. Saupe, editors, The Science of Fractal Images, Springer-Verlag, New York, 1988. Google Scholar
[10] J. Ritt, On the iteration of rational functions, Trans. Amer. Math. Soc. 21:3 (1920), 348–356. doi:10.1090/S0002-9947-1920-1501149-6 Google Scholar
[11] E. Schr ̈oder, U ̈ber iterierte Funktionen, Math. Ann. 2 (1871), 296–322. Google Scholar
[12] H. Trappmann and D. Kouznetsov, Uniqueness of holomorphic Abel functions at a complex fixed point pair, Aequationes Mathematicae, 81:1 (2011), 65–76. Google Scholar
[13] P. Walker, The exponential of iteration of ex − 1, Proc. Am. Math. Soc. 110:3 (1990), 611–620. Google Scholar
[14] P. Walker, On the Solutions of an Abelian Functional Equation, Journal of Mathematical Analysis and Applications 155 (1991), 93–110. Google Scholar