Computation of $\lambda$-invariant
Main Article Content
Abstract
Article Details
References
[1] K.Iwasawa, On Zl-extensions of algebraic number fields , Ann. of math. 98 (2) (1973), 246–326. Google Scholar
[2] B.Ferrero and L.Washington, The Iwasawa invariant μp vanishes for abelian number fields , Ann. of Math. 109 (1979), 377–395. Google Scholar
[3] T.Fukuda, Iwasawa λ-invariants of imaginary quadratic fields , J. of the College of Industrial Technology, Nihon Univ. 27 (1) (1994), 35–86. Google Scholar
[4] T.Fukuda, Iwasawa λ-invariants of imaginary quadratic fields, II , J. of the College of Industrial Technology, Nihon Univ. 27 (2) (1994), 83–134. Google Scholar
[5] Y.Kida, The λ-invariants of p-dic measures on Zp and 1 + qZp , Sci. Rep. Kanazawa Univ. 30 (1986), 33–38. Google Scholar
[6] J.Oh, On the Iwasawa λ-invariants of imaginary quadratic fields , Proc. Japan Acad. Ser. A math. Sci. 75 (3) (1999), 29–31. Google Scholar
[7] W.Sinnott, On the μ-invariant of the Gamma-transform of a rational function , Invent. Math. 75 (1984), 273–282. Google Scholar