Quantitative estimates for generalized two dimensional Baskakov operators
Main Article Content
Abstract
Article Details
References
[1] Adell J.A., Bada F.G. and Cal J. de la, On the iterates of some Bernstein type operators, J. Math. Anal. Appl. 209 (1997), 529–541. Google Scholar
[2] Baskakov V.A., An example of a sequence of linear positive operators in the spaces of continuous functions, Dokl. Akad. Nauk SSSR 113 (1957), 249–251. Google Scholar
[3] Becker M., Global approximation theorems for SzszMirakjan and Baskakov op- erators in polynomial weight spaces, Indiana Univ. Math. J. 27 (1978), 127–142. Google Scholar
[4] Deo N., On the iterative combinations of Baskakov operators, General Mathematics, 15 (11) (2007), 51–58. Google Scholar
[5] Deo N. and Bhardwaj N., On the degree of approximation by modified Baskakov operators, Lobachevskii J. Math. 32 (1) (2011), 16–22. Google Scholar
[6] Ditzian Z. and Totik V., Moduli of Smoothness, Springer-Verlag, Berlin, 1987. Google Scholar
[7] Guo F., On convergence rate of approximation for two-dimensional Baskakov operators, Analysis in Theory and Applications, 19 (3) (2003), 273–279. Google Scholar
[8] O zarslan M.A. and Aktu glu H., Quantitative Global Estimates for Generalized Double Szasz-Mirakjan Operators, Journal of Applied Mathematics, 13 (2013). Google Scholar
[9] O ̈zarslanM.A.andDumanO.,Anewapproachinobtainingabetterestimation in approximation by positive linear operators, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math Stat., 58 (1) (2009), 17–22. Google Scholar
[10] Szasz O., Generalization of S. Bernstein’s polynomials to the infinite interval, J. Research Nat. Bur. Standards, 45 (1950), 239–245. Google Scholar