Korean J. Math. Vol. 24 No. 3 (2016) pp.345-367
DOI: https://doi.org/10.11568/kjm.2016.24.3.345

Derivations of UP-algebras

Main Article Content

Kaewta Sawika
Rossukon Intasan
Arocha Kaewwasri
Aiyared Iampan

Abstract

The concept of derivations of BCI-algebras was first introduced by Jun and Xin. In this paper, we introduce the notions of $(l,r)$-derivations, $(r,l)$-derivations and derivations of UP-algebras and investigate some related properties. In addition, we define two subsets $\mathrm{Ker}_{d}(A)$ and $\mathrm{Fix}_{d}(A)$ for some derivation $d$ of a UP-algebra $A$, and we consider some properties of these as well.


Article Details

References

[1] H. A. S. Abujabal and N. O. Al-Shehri, Some results on derivations of BCI- algebras, J. Nat. Sci. Math. 46 (2006), no. 1&2, 13–19. Google Scholar

[2] H. A. S. Abujabal and N. O. Al-Shehri, On left derivations of BCI-algebras, Soochow J. Math. 33 (2007), no. 3, 435–444. Google Scholar

[3] A. M. Al-Roqi, On generalized (α, β)-derivations in BCI-algebras, J. Appl. Math. & Informatics 32 (2014), no. 1–2, 27–38. Google Scholar

[4] N. O. Al-Shehri, Derivations of MV-algebras, Internat. J. Math. & Math. Sci. 2010 (2010), Article ID 312027, 8 pages. Google Scholar

[5] N. O. Al-Shehri and S. M. Bawazeer, On derivations of BCC-algebras, Int. J. Algebra 6 (2012), no. 32, 1491–1498. Google Scholar

[6] N. O. Al-Shehrie, Derivation of B-algebras, J. King Abdulaziz Univ. : Sci. 22 (2010), no. 1, 71–83. Google Scholar

[7] L. K. Ardekani and B. Davvaz, f-derivations and (f,g)-derivations of MV- algebras, Journal of Algebraic Systems 1 (2013), no. 1, 11–31. Google Scholar

[8] L. K. Ardekani and B. Davvaz, On (f,g)-derivations of B-algebras, Mat. Vesn. 66 (2014), no. 2, 125–132. Google Scholar

[9] S. M. Bawazeer, N. O. Al-Shehri, and R. S. Babusal, Generalized derivations of BCC-algebras, Internat. J. Math. & Math. Sci. 2013 (2013), Article ID 451212, 4 pages. Google Scholar

[10] T. Ganeshkumar and M. Chandramouleeswaran, Generalized derivation on TM- algebras, Int. J. Algebra 7 (2013), no. 6, 251–258. Google Scholar

[11] Q. P. Hu and X. Li, On BCH-algebras, Math. Semin. Notes, Kobe Univ. 11 (1983), 313–320. Google Scholar

[12] A. Iampan, A new branch of the logical algebra: UP-algebras, Manuscript sub- mitted for publication, April 2014. Google Scholar

[13] S. Ilbira, A. Firat, and Y. B. Jun, On symmetric bi-derivations of BCI-algebras. Google Scholar

[14] Y. Imai and K. Is eki, On axiom system of propositional calculi, XIV, Proc. Japan Acad. 42 (1966), no. 1, 19-22. Google Scholar

[15] K. Is eki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), no. 1, 26-29. Google Scholar

[16] M. A. Javed and M. Aslam, A note on f-derivations of BCI-algebras, Commun. Korean Math. Soc. 24 (2009), no. 3, 321–331. Google Scholar

[17] Y. B. Jun and X. L. Xin, On derivations of BCI-algebras, Inform. Sci. 159 (2004), 167–176. Google Scholar

[18] S. Keawrahun and U. Leerawat, On isomorphisms of SU-algebras, Sci. Magna 7 (2011), no. 2, 39–44. Google Scholar

[19] K. J. Lee, A new kind of derivation in BCI-algebras, Appl. Math. Sci. 7 (2013), no. 84, 4185–4194. Google Scholar

[20] P. H. Lee and T. K. Lee, On derivations of prime rings, Chinese J. Math. 9 (1981), 107–110. Google Scholar

[21] S. M. Lee and K. H. Kim, A note on f-derivations of BCC-algebras, Pure Math. Sci. 1 (2012), no. 2, 87–93. Google Scholar

[22] G. Muhiuddin and A. M. Al-Roqi, On (α,β)-derivations in BCI-algebras, Dis- crete Dyn. Nat. Soc. 2012 (2012), Article ID 403209, 11 pages. Google Scholar

[23] G. Muhiuddin and A. M. Al-Roqi, On t-derivations of BCI-algebras, Abstr. Appl. Anal. 2012 (2012), Article ID 872784, 12 pages. Google Scholar

[24] G. Muhiuddin and A. M. Al-Roqi, On generalized left derivations in BCI- algebras, Appl. Math. Inf. Sci. 8 (2014), no. 3, 1153–1158. Google Scholar

[25] G. Muhiuddin and A. M. Al-Roqi, On left (θ, φ)-derivations in BCI-algebras, J. Egypt. Math. Soc. 22 (2014), 157–161. Google Scholar

[26] F. Nisar, Characterization of f-derivations of a BCI-algebra, East Asian Math. J. 25 (2009), no. 1, 69–87. Google Scholar

[27] F. Nisar, On F -derivations of BCI-algebras, J. Prime Res. Math. 5 (2009), 176– 191. Google Scholar

[28] E. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093– 1100. Google Scholar

[29] C. Prabpayak and U. Leerawat, On ideas and congruences in KU-algebras, Sci. Magna 5 (2009), no. 1, 54–57. Google Scholar

[30] K. S. So and S. S. Ahn, Complicated BCC-algebras and its derivation, Honam Math. J. 34 (2012), no. 2, 263–271. Google Scholar

[31] J. Thomys, f-derivations of weak BCC-algebras, Int. J. Algebra 5 (2011), no. 7, 325–334. Google Scholar

[32] L. Torkzadeh and L. Abbasian, On (⊙, ∨)-derivations for BL-algebras, J. Hy- perstruct. 2 (2013), no. 2, 151–162. Google Scholar

[33] J. Zhan and Y. L. Liu, On f-derivations of BCI-algebras, Internat. J. Math. & Math. Sci. 11 (2005), 1675–1684. Google Scholar