A generic research on nonlinear non-convolution type singular integral operators
Main Article Content
Abstract
In this paper, we present some general results on the pointwise convergence of the non-convolution type nonlinear singular integral operators in the following form:
\begin{equation*}
T_{\lambda }(f;x)=\underset{\Omega }{\int }K_{\lambda }\left( t,x,f\left(t\right) \right) dt,\text{ }x\in \Psi ,\text{ }\lambda \in \Lambda ,
\end{equation*}
where $\Psi =\left \langle a,b\right \rangle $ and $\Omega =\left \langle A,B\right \rangle $ stand for arbitrary closed, semi-closed or open bounded intervals in $\mathbb{R}$ or these set notations denote $\mathbb{R} $, and $\Lambda $ is a set of non-negative numbers, to the function $f\in L_{p,w}\left( \Omega \right) $, where $L_{p,w}\left( \Omega \right) $ denotes the space of all measurable functions $f$ for which $\left \vert \frac{f}{w}\right \vert ^{p}$ $(1\leq p<\infty )$ is integrable on $\Omega ,$ and $w: \mathbb{R} \rightarrow \mathbb{R}^{+}$ is a weight function satisfying some conditions.
Article Details
References
[1] G. Alexits, Konvergenzprobleme der Orthogonalreihen, Verlag der Un- garischen Akademie der Wissenschaften, Budapest, 1960. Google Scholar
[2] C. Bardaro, On approximation properties for some classes of linear op- erators of convolution type, Atti Sem. Mat. Fis. Univ. Modena, 33 (2) (1984), 329–356. Google Scholar
[3] C. Bardaro and G. Vinti, On approximation properties of certain noncon- volution integral operators, J. Approx. Theory, 62 (3) (1990), 358–371. Google Scholar
[4] C. Bardaro and G. Vinti, Approximation by nonlinear integral operators in some modular function spaces, Ann. Polon. Math., 63 (1996), 173–182. Google Scholar
[5] C. Bardaro, J. Musielak and G. Vinti, Nonlinear integral operators and applications: De Gruyter Series in Nonlinear Analysis and Applications, Vol. 9, Walter de Gruyter, Publ., Berlin, New York, 2003. Google Scholar
[6] C. Bardaro and I. Mantellini, Pointwise convergence theorems for nonlin- ear Mellin convolution operators, Int. J. Pure Appl. Math., 27 (4) (2006), 431-447. Google Scholar
[7] P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation: Vol. I, Academic Press, New York, London, 1971. Google Scholar
[8] Deepmala and H. K. Pathak, A study on some problems on existence of solutions for nonlinear functional-integral equations, Acta Mathematica Scientia, 33 B(5) (2013), 1305–1313. Google Scholar
[9] Deepmala, A study on fixed point theorems for nonlinear contractions and its applications, Ph. D. Thesis, Pt. Ravishankar Shukla University, Raipur 492 010, Chhatisgarh, India, 2014. Google Scholar
[10] S. Esen, Convergence and the order of convergence of family of non- convolution type integral operators at characteristic points, Ph. D. Thesis, Ankara University, Ankara, Turkey, 2002. Google Scholar
[11] S. Esen, The order of approximation by the family of integral operators with positive kernel, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 28 (2008), 117-122. Google Scholar
[12] A. D. Gadjiev, The order of convergence of singular integrals which de- pend on two parameters, in: Special Problems of Functional Analysis and their Appl. to the Theory of Diff. Eq. and the Theory of Func., Izdat. Akad. Nauk Azerbaidzan. SSR, (1968), 40–44. Google Scholar
[13] O. O. Guller, G. Uysal and E. Ibikli, On weighted approximation by singular integral operators depending on two parameters, 4th Interna- tional Eurasian Conference on Mathematical Sciences and Applications (IECMSA 2015), Athens, Greece, (2015), 89. Google Scholar
[14] H. Karsli, On approximation properties of non-convolution type nonlinear integral operators, Anal. Theory Appl., 26 (2) (2010), 140–152. Google Scholar
[15] R. G. Mamedov, On the order of convergence of m-singular integrals at generalized Lebesgue points and in the space Lp(−∞,∞), Izv. Akad. Nauk SSSR Ser. Mat., 27 (2) (1963), 287-304. Google Scholar
[16] V. N. Mishra and L. N. Mishra, Trigonometric approximation of signals (Functions) in Lp(p >= 1)-norm , International Journal of Contempo- rary Mathematical Sciences, 7(19) (2012), 909–918. Google Scholar
[17] V. N. Mishra and S. Pandey, On Chlodowsky variant of (p; q) Kantorovich-Stancu-Schurer operators, Int. J. Analysis and Applications, 11 (1) (2016), 28-39. Google Scholar
[18] L. N. Mishra and M. Sen, On the concept of existence and local attractivity of solutions for some quadratic Volterra integral equation of fractional order, Appl. Math. Comput., 285 (2016), 174–183. Google Scholar
[19] L. N. Mishra, M. Sen and R. N. Mohapatra, On existence theorems for some generalized nonlinear functional-integral equations with appli- cations, Filomat, (2016), (in press). Google Scholar
[20] L. N. Mishra, R. P. Agarwal and M. Sen, Solvability and asymptotic behav- ior for some nonlinear quadratic integral equation involving Erdelyi-Kober fractional integrals on the unbounded interval, Progress in Fractional Dif- ferentiation and Applications, 2 (3) (2016), 153-168. Google Scholar
[21] J. Musielak, On some approximation problems in modular spaces, in: Constructive Function Theory, Proceedings of International Conference Varna, 1-5 June, 1981, Publication House of Bulgarian Academic of Sciences, Sofia, (1983), 181-189. Google Scholar
[22] J. Musielak, Approximation by nonlinear singular integral operators in generalized Orlicz spaces, Comment. Math. Prace Mat., 31 (1991), 79–88. Google Scholar
[23] T. Swiderski and E. Wachnicki, Nonlinear singular integrals depending on two parameters, Comment. Math., 40 (2000), 181-189. Google Scholar
[24] H. K. Pathak and Deepmala, Common fixed point theorems for PD- operator pairs under relaxed conditions with applications, J. Comp. Appl. Math., 239 (2013), 103-113. Google Scholar
[25] W. Rudin, Real and Complex Analysis, Mc-Graw Hill Book Co., London, 1987. Google Scholar
[26] B. Rydzewska, Approximation des fonctions par des int egrales singuli`eres ordinaires, Fasc. Math., 7 (1973), 71-81. Google Scholar
[27] R. Taberski, Singular integrals depending on two parameters, Prace Mat., 7 (1962), 173-179. Google Scholar
[28] G. Uysal and E. Ibikli, A note on nonlinear singular integral operators depending on two parameters, New Trends Math. Sci. 4 (1) (2016), 104– 114. Google Scholar