Abelian property concerning factorization modulo radicals
Main Article Content
Abstract
Article Details
Supporting Agencies
References
[1] S.A. Amitsur, Radicals of polynomial rings, Canad. J. Math. 8 (1956), 355–361. Google Scholar
[2] D. Anderson, V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), 2265–2272. Google Scholar
[3] R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), 3128–3140. Google Scholar
[4] E.P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470–473. Google Scholar
[5] G.F. Birkenmeier, J.Y. Kim, J.K. Park, A connection between weak regularity and the simplicity of prime factor rings, Proc. Amer. Math. Soc. 122 (1994), 53–58. Google Scholar
[6] K.R. Goodearl, Von Neumann Regular Rings, Pitman, London, 1979. Google Scholar
[7] K.R. Goodearl and R.B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, Cambridge University Press, Cambridge-New York-Port Chester-Melbourne-Sydney, 1989. Google Scholar
[8] J. Han, H.K. Kim, Y. Lee, Armendariz property over prime radicals, J. Korean Math. Soc. 50 (2013), 973–989. Google Scholar
[9] Y. Hirano, D.V. Huynh and J.K. Park, On rings whose prime radical contains all nilpotent elements of index two, Arch. Math. 66 (1996), 360–365. Google Scholar
[10] C. Huh, H.K. Kim, Y. Lee, p.p. rings and generalized p.p. rings, J. Pure Appl. Algebra 167 (2002), 37–52. Google Scholar
[11] C. Huh, Y. Lee, A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), 751–761. Google Scholar
[12] S.U. Hwang, Y.C. Jeon and Y. Lee, Structure and topological conditions of NI rings, J. Algebra 302 (2006), 186–199. Google Scholar
[13] Y.C. Jeon, H.K. Kim, Y. Lee and J.S. Yoon, On weak Armendariz rings, Bull. Korean Math. Soc. 46 (2009), 135–146. Google Scholar
[14] N.K. Kim, K.H. Lee, Y. Lee, Power series rings satisfying a zero divisor property, Comm. Algebra 34 (2006), 2205–2218. Google Scholar
[15] N.K. Kim, Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), 477–488. Google Scholar
[16] T.K. Kwak, Y. Lee, A.C ̧. O ̈zcan, On Jacobson and nil radicals related to poly- nomial rings, J. Korean Math. Soc. 53 (2016), 415–431. Google Scholar
[17] T.Y. Lam, Lectures on Modules and Rings, Springer-Verlag, New York, 1991. Google Scholar
[18] J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Company, Waltham-Massachusetts-Toronto-London, 1966. Google Scholar
[19] C. Lanski, Nil subrings of Goldie rings are nilpotent, Canad. J . Math. 21 (1969), 904–907. Google Scholar
[20] M.B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), 14–17. Google Scholar