On a classification of warped product spaces with gradient Ricci solitons
Main Article Content
Abstract
Article Details
Supporting Agencies
References
[1] A.Besse, Einstein manifolds, Springer-Verlag, Berlin, 1987. Google Scholar
[2] H. D. Cao, Geometry of Ricci solitons, Lecture note, Lehigh Univ., 2008. Google Scholar
[3] H. D. Cao, Recent progress on Ricci solitons, arXiv:0908.2006v1, 2008. Google Scholar
[4] T. Chave, G. Valent, On a class of compact and non-compact quasi-Einstein metrics and their renoirmalizability properties, Nuclear Phys. B478 (1996), 758– 778. Google Scholar
[5] M. Eminenti, G. La Nave and C. Mantegazza, Ricci solitons : The equation point of view, Menuscripta Math. 127 (2008) 345–367. Google Scholar
[6] M. Fern andez-L opez and E. Garc ia-R io, A remark on compact Ricci solitons, Math. Ann. 340 (2008) 893-896. Google Scholar
[7] R. S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity (Santa Cruz CA, 1986), 237-262, Contemp. Math. 71, American Math. Soc., 1988. [8] T. Ivey, Ricci solitons on compact 3-manifolds, Differential Geom. Appl. 3 (1993) 301-307. Google Scholar
[8] T. Ivey, New examples of complete Ricci solitons, Proc. AMS 122 (1994) 241–245. [10] B. H. Kim, Warped products with critical Riemannian metric , Proc. Japan Academy 71 (1995) 117–118. Google Scholar
[9] B. H. Kim, S.D.Lee, J.H.Choi and Y.O.Lee, On warped product spaces with a certain Ricci condition , B. Korean Math. Soc. 50 (2013) (5), 1693–1710. Google Scholar
[10] L. Ma and V. Miquel, Remarks on scalar curvature of Yamabe solitons, Ann. Glob. Ana., Geom. 42 (2012), 195–205. Google Scholar
[11] G. Perelman, Ricci flow with surgery on three manifolds, arXiv:math. DG/0303109. Google Scholar