On Kantorovich form of generalized Sz\'{a}sz-type operators using Charlier polynomials
Main Article Content
Abstract
Article Details
Supporting Agencies
References
[1] T.Acar, L.N.Mishra and V.N.Mishra, Simultaneous approximation for generalized Srivastava-Gupta operator, Journal of Function Spaces, 2015, Article ID 936308, (2015) 11 pages, doi:10.1155/2015/936308. Google Scholar
[2] S.N. Bernstein, De monstration du the ore`me de Weierstrass, fondee sur le calcul de s probabilite s, Commun. Soc. Math. Kharkow 2 (13) (1912-1913), 1-2. Google Scholar
[3] R.A. DeVore and G.G. Lorentz, Constructive Approximation, Grudlehren der Mathematischen Wissenschaften [Fundamental principales of Mathematical Sci- ences], (Springer-Verlag, Berlin, 1993). Google Scholar
[4] Z. Ditzian and V. Totik, Moduli of smoothness, Springer Series in Computational Mathematics, 8. Springer-Verlag, New York, 1987. Google Scholar
[5] R.B. Gandhi, Deepmala and V.N. Mishra, Local and global results for modified Sz asz - Mirakjan operators, Math. Method. Appl. Sci. (2016), DOI:10.1002/ mma.4171. Google Scholar
[6] H.Gonska and I.Rasa, Asymptotic behaviour of differentiated Bernstein polynomials, Mat. Vesnik, 61 (2009), 53–60. Google Scholar
[7] H.Gonska, M.Heilmann and I.Rasa, Kantorovich operators of order k, Numer. Funct. Anal. Optimiz. 32 (2011), 717–738. Google Scholar
[8] M.E.H. Ismail, Classical and Quantum Orthogonal Polynomials in one Variable, Cambridge University Press, Cambridge, 2005. Google Scholar
[9] L.V. Kantorovich, Sur certains de veloppements suivant les polyno^mes la forme de S. Bernstein, I, II, C. R. Acad URSS, (1930) 563-568, 595-600. Google Scholar
[10] J.P. King, Positive linear opeartors which preserves x2, Acta Math. Hungar 99 (3) (2003), 203–208. Google Scholar
[11] G.G. Lorentz, Mathematical Expositions, No. 8, Bernstein polynomials, Univer- sity of Toronto Press, Toronto 1953. Google Scholar
[12] V.N. Mishra, K. Khatri and L.N. Mishra, On Simultaneous Approximation for Baskakov-Durrmeyer-Stancu type operators, Journal of Ultra Scientist of Phys- ical Sciences 24 (3) (2012), 567–577. Google Scholar
[13] V.N. Mishra, K. Khatri, L.N.Mishra and Deepmala, Inverse result in simulta- neous approximation by Baskakov-Durrmeyer-Stancu operators, Journal of In- equalities and Applications 2013, 2013:586.doi:10.1186/1029-242X-2013-586. Google Scholar
[14] V.N. Mishra, H.H. Khan, K. Khatri and L.N. Mishra, Hypergeometric Representation for Baskakov-Durrmeyer-Stancu Type Operators, Bulletin of Mathe- matical Analysis and Applications, 5 (3) (2013), 18–26. Google Scholar
[15] V.N. Mishra, K. Khatri and L.N. Mishra, Some approximation properties of q- Baskakov-Beta-Stancu type operators, Journal of Calculus of Variations, Volume 2013, Article ID 814824, 8 pages. http://dx.doi.org/10.1155/2013/814824. Google Scholar
[16] V.N. Mishra, K. Khatri and L.N. Mishra Statistical approximation by Kantorovich type Discrete q−Beta operators, Advances in Difference Equations 2013, 2013:345, DOI:10.1186/10.1186/1687-1847-2013-345. Google Scholar
[17] V.N. Mishra, P. Sharma and L.N. Mishra, On statistical approximation properties of q-Baskakov-Sz asz-Stancu operators, Journal of Egyptian Mathematical Society 24 (3) (2016), 396-401. DOI:10.1016/j.joems.2015.07.005. Google Scholar
[18] V.N. Mishra, R.B.Gandhi and F.Nasierh, Simultaneous approximation by Sz asz-Mirakjan-Durrmeyer-type operators, Bollettino dell'Unione Matematica Italiana 8 (4) (2016), 297-305. Google Scholar
[19] V.N. Mishra and R.B. Gandhi, Simultaneous approximation by Sz asz-Mirakjan- Stancu-Durrmeyer type operators, Periodica Mathematica Hungarica 74 (1), (2017), 118-127. DOI:10.1007/s10998-016-0145-0. Google Scholar
[20] R.N. Mohapatra and Z. Walczak, Remarks on a class of Szsz-Mirakyan type operators, East J. Approx., 15 (2) (2009), 197–206. Google Scholar
[21] O. Sz asz, Generalization of S. Bernstein's polynomials to the infinite interval, J. Research Nat. Bur. Standards Sci. 45 (3-4) (1950), 239-245. Google Scholar
[22] V. Totik, Approximation by Sza sz-Mirakjan-Kantorovich operators in Lp(p > 1), Anal. Math. 9 (2) (1983), 147-167. Google Scholar
[23] A. Wafi and N. Rao, Stancu-variant of generalized Baskakov operators, Filomat, (2015) (In Press). Google Scholar
[24] A. Wafi, N.Rao and D. Rai, Approximation properties by generalized-Baskakov- Kantorovich-Stancu type operators, Appl. Math. Inf. Sci. Lett., 4 (3) (2016), 111–118. Google Scholar
[25] A. Wafi and N. Rao, Sza sz-Durremeyer operators based on Dunkl analogue, Com- plex Anal. Oper. Theory, (2017) 1-18. doi:10.1007/s11785-017-0647-7. Google Scholar
[26] A. Wafi and N. Rao, A generalization of Sz asz-type operators which preserves constant and quadratic test functions, Cogent Mathematics (2016), 3: 1227023. Google Scholar
[27] S. Varma and F. Ta sdelen, Sz asz type operators involving Charlier polynomials, Math. Comput. Modeling, 56 (5-6) (2012) 118-122. Google Scholar