Korean J. Math. Vol. 25 No. 2 (2017) pp.261-278
DOI: https://doi.org/10.11568/kjm.2017.25.2.261

$([r,s],[t,u])$-interval-valued intuitionistic fuzzy alpha generalized continuous mappings

Main Article Content

Chun-Kee Park

Abstract

In this paper, we introduce the concepts of $([r,s], [t,u])$-interval-valued intuitionistic fuzzy alpha generalized closed and open sets in the interval-valued intuitionistic smooth topological space and $([r,s], [t,u])$-interval-valued intuitionistic fuzzy alpha generalized continuous mappings and then investigate some of their properties.


Article Details

References

[1] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1) (1986), 87–96. Google Scholar

[2] K. Atanassov and G. Gargov, Interval-valued intuitionistic fuzzy sets, Fuzzy Sets and Systems 31 (3) (1989), 343–349. Google Scholar

[3] R. Badard, Smooth axiomatics, First IFSA Congress, Palma de Mallorca (July 1986). Google Scholar

[4] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968). 182–190. Google Scholar

[5] K. C. Chattopadhyay, R. N. Hazra and S. K. Samanta, Gradation of openness:fuzzy topology, Fuzzy Sets and Systems 49 (1992), 237–242. Google Scholar

[6] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), 81–89. Google Scholar

[7] R. N. Hazra, S. K. Samanta and K. C. Chattopadhyay, Fuzzy topology redefined, Fuzzy Sets and Systems 45 (1992), 79–82. Google Scholar

[8] J. K. Jeon, Y. B. Jun and J. H. Park, Intuitionistic fuzzy alpha continuity and intuitionistic fuzzy Google Scholar

[9] pre continuity, International Journal of Mathematics and Mathematical Sciences, 19 (2005), 3091–3101. Google Scholar

[10] T. K. Mondal and S. K. Samanta, On intuitionistic gradation of openness, Fuzzy Sets and Systems 131 (2002), 323–336. Google Scholar

[11] T. K. Mondal and S. K. Samanta, Topology of interval-valued fuzzy sets, Indian J. Pure Appl. Math. 30 (1) (1999), 23–38. Google Scholar

[12] T. K. Mondal and S. K. Samanta, Topology of interval-valued intuitionistic fuzzy sets, Fuzzy Sets and Systems 119 (2001), 483–494. Google Scholar

[13] C. K. Park, Interval-valued intuitionistic gradation of openness, Korean J. Math. 24 (1) (2016), 27–40. Google Scholar

[14] A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992), 371–375. Google Scholar

[15] K. Sakthivel, Intuitionistic fuzzy anpha generalized continuous mappings and intuitionistic alpha generalized irresolute mappings, Applied Mathematical Sciences, 4 (37) (2010), 1831–1842. Google Scholar

[16] S. K. Samanta and T. K. Mondal, Intuitionistic gradation of openness: intuitionistic fuzzy topology, Busefal 73 (1997), 8–17. Google Scholar

[17] L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338–353. Google Scholar

[18] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning I, Inform. Sci. 8 (1975), 199–249. Google Scholar