Korean J. Math. Vol. 25 No. 1 (2017) pp.87-97
DOI: https://doi.org/10.11568/kjm.2017.25.1.87

Quantum modularity of mock theta functions of order 2

Main Article Content

Soon-Yi Kang

Abstract

In [9], we computed shadows of the second order mock theta functions and showed that they are essentially same with the shadow of a mock theta function related to the Mathieu moonshine phenomenon. In this paper, we further survey the second order mock theta functions on their quantum modularity and their behavior in the lower half plane.


Article Details

References

[1] G. E. Andrews, Mordell integrals and Ramanujan’s “lost" notebook, Analytic number theory, (Philadelphia, Pa., 1980), pp. 1018, Lecture Notes in Math., 899, Springer, Berlin-New York, 1981. Google Scholar

[2] K. Bringmann, A. Folsom, and R. C. Rhoades, Partial theta functions and mock modular forms as q-hypergeometric series, Ramanujan J. 29 (2012), 295-310. Google Scholar

[3] K. Bringmann and L. Rolen, Radial limits of mock theta functions, Res. Math. Sci. 2 (2015), 2–17. Google Scholar

[4] A. Folsom, S. Garthwaite, S.-Y. Kang, H. Swisher and S. Treneer, Quantum mock modular forms arising from eta-theta fnctions, Res. Number Theory 2 (2016). Google Scholar

[5] A. Folsom, K. Ono and R. C. Rhoades, Mock theta functions and quantum modular forms, Forum Math. Pi 1 (2013), e2, 27p. Google Scholar

[6] B. Gordon and R. J. McIntosh, A survey of classical mock theta functions, Par- titions, q-Series, and Modular Forms, pp. 95–144, Springer, Berlin, 2012. Google Scholar

[7] K. Hikami, Mock (false) theta functions as quantum invariants, Regul. Chaotic Dyn. 10 (2005), 509–530. Google Scholar

[8] S.-Y. Kang, Mock Jacobi forms in basic hypergeometric series, Compos. Math. 145 (3) (2009), 553–565. Google Scholar

[9] S.-Y. Kang and H. Swisher, Mock theta functions of order 2 and their shadow computations, Bull. Korean Math. Soc. (to appear). Google Scholar

[10] R. Lawrence and D. Zagier, Modular forms and quantum invariants of 3- manifolds, Asian J. Math. 3 (1999) 93–108. Google Scholar

[11] R. J. McIntosh, Second order mock theta functions, Canad. Math. Bull. 50 (2) (2007), 284–290. Google Scholar

[12] R. J. McIntosh, The H and K family of mock theta functions, Canad. J. Math. 64 (2012), 935–960. Google Scholar

[13] R. J. McIntosh, On the universal mock theta function g2 and Zwegers’ μ- function, Proceedings of Alladi60 Conference (2016), http://qseries.org/ alladi60/talks/mcintosh/ Google Scholar

[14] K. Ono, Unearthing the visions of a master: harmonic Maass forms and number theory, Current developments in mathematics 2008 (2009), 347–454. Google Scholar

[15] S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988. Google Scholar

[16] D. Zagier, Ramanujan’s mock theta functions and their applications (after Zwegers and Ono-Bringmann), S`eminaire Bourbaki, Vol. 2007/2008. Astrisque No. 326 (2009), Exp. No. 986, viiviii, 143164 (2010). Google Scholar

[17] D. Zagier, Quantum Modular Forms, In Quanta of Maths: Conference in honor of Alain Connes, Clay Math. Proc. 11 (2010), Amer. Math. Soc., Providence, RI, 659–675. Google Scholar

[18] S. P. Zwegers, Mock Theta Functions Thesis, Utrecht, 2002, https://dspace. library.uu.nl/bitstream/handle/1874/878/full.pdf?sequence=11. Google Scholar

[19] S. P. Zwegers, Multivariable Appell functions, 2010 http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid= 5753340C9807A361CBD13F25FD0DEA7D?doi=10.1.1.164.6121&rep= rep1&type=pdf. Google Scholar