The mass formula of self-orthogonal codes over $\mathbf {GF(q)}$
Main Article Content
Abstract
Article Details
References
[1] V.S. Pless, The number of isotropic subspace in a finite geometry, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei 39 (1965), 418–421. Google Scholar
[2] V.S. Pless, On the uniqueness of the Golay codes, J. Combin. Theory 5 (1968), 215–228. Google Scholar
[3] Simeon Ball and Zsuasa Weiner, An Introduction to Finite Geometry (2011). Google Scholar
[4] Simeon Ball Finite Geometry and Combinatorial Applications, Cambridge University Press ( 2015). Google Scholar
[5] R.A.L. Betty and A. Munemasa, Mass formula for self-orthogonal codes over Zp2 , J.Combin.Inform.System sci., Google Scholar
[6] J.M.P. Balmaceda, R.A.L. Betty and F.R. Nemenzo, Mass formula for self-dual codes over Zp2 , Discrete Math. 308 (2008), 2984–3002 . Google Scholar
[7] Y.H. Park, The classification of self-dual modular codes, Finite Fields and Their Applications 17 (5) (2011), 442–460. Google Scholar
[8] W. Cary Huffman and Vera Pless, Fundamentals of error correcting codes, Cambridge University Pless, New York, 2003. Google Scholar