Korean J. Math. Vol. 25 No. 4 (2017) pp.513-535
DOI: https://doi.org/10.11568/kjm.2017.25.4.513

Study on BCN and BAN Ruled Surfaces in $\mathbb{E}^{3}$

Main Article Content

Hamdy N. Abd-Ellah
Abdelrahim Khalifa Omran

Abstract

As a continuation to the study in [8, 12, 15, 17], we construct bi-conservative central normal (BCN) and bi-conservative asymptomatic normal (BAN) ruled surfaces in Euclidean 3-space $\mathbb{E}^{3}$. For such surfaces, local study is given and some examples are constructed using computer aided geometric design (CAGD).



Article Details

References

[1] Abdel-All, N. H. and Abd-Ellah, H. N., Critical values of deformed osculating hyperruled surfaces, Indian J. Pure Appl. Math. 32 (8) (2001), 1217-1228, 2001. Google Scholar

[2] Abdel-All, N. H. and Abd-Ellah, H. N., Stability of closed hyperruled surfaces, Chaos, Solitons and Fractals 13 (2002), 1077–1092. Google Scholar

[3] Abdel-All, N. H. and Hamdoon, F. M., Extension B-scroll surfaces in Lorentz 3-dimensional space, Rivista Di Math. 3 (6) (2000), 57–67. Google Scholar

[4] Abdel-All, N. H. , Hamdoon, F. M. , Abd-Ellah, H. N. and Omran, A. K., Corresponding developable ruled surfaces in Euclidean 3-space E3, J. Math. Comput. Sci, 6 (3) (2016), 390–405. Google Scholar

[5] Abdel-All, N. H., Abdel-Baky, R. A. and Hamdoon, F. M., Ruled surfaces with timelike rullings, Appl. Math. Comput. 147 (2004), 241–253. Google Scholar

[6] Abd-Ellah, H. N., Translation L/W-surfaces in Euclidean 3-space E3, Journal of the Egyptian Mathematical Society 23 (2015), 513–517. Google Scholar

[7] Caddeo, R., Montaldo, S., Oniciuc, C. and Piu, P., Surfaces in the three- dimensional space forms with divergence-free stress-bienergy tensor, Ann. Mat. Google Scholar

[8] Pura Appl., 193 (4) (2014), 529–550. Google Scholar

[9] Chen, B. Y. and Munteanu, M. I., Biharmonic ideal hypersurfaces in Euclidean spaces , Differ. Geom. Appl., 31 (2013), 1–16. Google Scholar

[10] Chen, B. Y., Geometry of Submanifolds, Marcel Dekker, New York, USA, 1973. Google Scholar

[11] Chen, B. Y., Some open problems and conjectures on submanifolds of finite type, Soochow Journal of Mathematics, 17 (2) (1991), 169–188. Google Scholar

[12] Fu, Yu and li, Lan, A class of Weingarten surfaces in Euclidean 3-space , Hindawi Publishing Corporation Abstract and Applied Analysis, 2013. Google Scholar

[13] Fu, Yu, On bi-conservative surfaces in Minkowski 3-space, Journal of Geometry and Physics 33 (2013), 71–79. Google Scholar

[14] Gray, A., Modern Differential Geometry of Curves and Surfaces CRC Press, Boca Raton, FL, Tokyo, 1993. Google Scholar

[15] Gray, A., Abbenda, E. and Salamon, S., Modern Differential Geometry of Curves and Surfaces with Mathematica, Third Edition , Chapman, Hall/CRC, 2006. Google Scholar

[16] Hamdoon, F. M. and Omran, A. K., Studying on a skew ruled surface by using the geodesic Frenet trihedron of its generator, Korean J. Math. 24 (4) (2016), 613–626. Google Scholar

[17] Hasanis, T. and Vlachos, T., Hypersurfaces in E4 with harmonic mean curvature vector field, Mathematische Nachrichten 172 (1995), 145–169. Google Scholar

[18] Montaldo, S., Oniciuc, C. and Ratto, A. , Bi-conservative surfaces, J. Geom. Anal., to appear. Google Scholar

[19] Orbay, K. and Kasap, E., Mannheim offsets of ruled surfaces, Mathematical Proplems in Engineering, 2009. Google Scholar

[20] Ravani, B. , and Ku, T. S., Bertrand offsets of ruled and developable surfaces, Computer-Aided Design 23 (2) (1991), 145–152. Google Scholar

[21] Shifrin, T., Differential Geometry: A First Course in Curves and Surfaces, Preliminary Version, Spring, 2015. Google Scholar

[22] Soliman, M. A., Abdel-All, Hussien, R. A. and Said, A. A., Geometric properties and invariants of Mannheim offsets of timelike ruled surface with timelike ruling, Mitteilungen Klosterneuburg J. 65 (2015), 285–299. Google Scholar

[23] Yilmaz, T. and Murat, K. K., On the geometry of the first and second fundamental forms of canal surfaces, math. DG, 2011, ArXiv:1106.3177 v1. Google Scholar