On some inequalities for numerical radius of operators in Hilbert spaces
Main Article Content
Abstract
By the use of inequalities for nonnegative Hermitian forms some new inequalities for numerical radius of bounded linear operators in complex Hilbert spaces are established.
Article Details
References
[1] M. L. Buzano, Generalizzazione della diseguaglianza di Cauchy-Schwarz (Italian), Rend. Sem. Mat. Univ. e Politech. Torino 31 (1971/73), 405–409 (1974). Google Scholar
[2] S. S. Dragomir, Some refinements of Schwartz inequality, Simpozionul de Matematici ̧si Aplica ̧tii, Timi ̧soara, Romania, 1-2 Noiembrie 1985, 13–16. Google Scholar
[3] S. S. Dragomir, Gru ̈ss inequality in inner product spaces, The Australian Math Soc. Gazette 26 (1999), No. 2, 66–70. Google Scholar
[4] S. S. Dragomir, A generalization of Gru ̈ss’ inequality in inner product spaces and applications, J. Math. Anal. Appl. 237 (1999), 74–82. Google Scholar
[5] S. S. Dragomir, Some Gru ̈ss type inequalities in inner product spaces, J. Inequal. Pure & Appl. Math. 4 (2) (2003), Article 42. (Online http://jipam.vu.edu.au/article.php?sid=280). Google Scholar
[6] S. S. Dragomir, Reverses of Schwarz, triangle and Bessel inequalities in inner product spaces, J. Inequal. Pure & Appl. Math. 5(3) (2004), Article 76. (Online : http://jipam.vu.edu.au/article.php?sid=432). Google Scholar
[7] S. S. Dragomir, New reverses of Schwarz, triangle and Bessel inequalities in inner product spaces, Austral. J. Math. Anal. & Applics. 1(1) (2004), Article 1. (Online: http://ajmaa.org/cgi-bin/paper.pl?string=nrstbiips.tex ). Google Scholar
[8] S. S. Dragomir, On Bessel and Gru ̈ss inequalities for orthornormal families in inner product spaces, Bull. Austral. Math. Soc. 69(2) (2004), 327–340. Google Scholar
[9] S. S. Dragomir, Advances in Inequalities of the Schwarz, Gru ̈ss and Bessel Type in Inner Product Spaces, Nova Science Publishers Inc, New York, 2005, x+249 p. Google Scholar
[10] S. S. Dragomir, Reverses of the Schwarz inequality in inner product spaces gen- eralising a Klamkin-McLenaghan result, Bull. Austral. Math. Soc. 73 (1) (2006), 69–78. Google Scholar
[11] S. S. Dragomir, Advances in Inequalities of the Schwarz, Triangle and Heisen- berg Type in Inner Product Spaces. Nova Science Publishers, Inc., New York, 2007. xii+243 pp. ISBN: 978-1-59454-903-8; 1-59454-903-6 (Preprint http://rgmia.org/monographs/advancees2.htm) Google Scholar
[12] S. S. Dragomir, Inequalities for the norm and the numerical radius of linear operators in Hilbert spaces. Demonstratio Math. 40 (2007), no. 2, 411–417. Google Scholar
[13] S. S. Dragomir, Some inequalities for the norm and the numerical radius of linear operators in Hilbert spaces, Tamkang J. Math. 39 (2008), no. 1, 1–7. Google Scholar
[14] S. S. Dragomir, Some new Gru ̈ss’ type inequalities for functions of selfadjoint operators in Hilbert spaces, RGMIA Res. Rep. Coll. 11(e) (2008), Art. 12. Google Scholar
[15] S. S. Dragomir, Inequalities for the Cˇebyˇsev functional of two functions of self-adjoint operators in Hilbert spaces, RGMIA Res. Rep. Coll. 11(e) (2008), Art. 17. Google Scholar
[16] S. S. Dragomir, Some inequalities for the Cˇebyˇsev functional of two functions of selfadjoint operators in Hilbert spaces, RGMIA Res. Rep. Coll. 11(e) (2008), Art. 8. Google Scholar
[17] S. S. Dragomir, Inequalities for the Cˇebyˇsev functional of two functions of self- adjoint operators in Hilbert spaces, Aust. J. Math. Anal. & Appl. 6 (2009), Issue 1, Article 7, pp. 1–58. Google Scholar
[18] S. S. Dragomir, Some inequalities for power series of selfadjoint operators in Hilbert spaces via reverses of the Schwarz inequality, Integral Transforms Spec. Funct. 20 (2009), no. 9-10, 757–767. Google Scholar
[19] S. S. Dragomir, Operator Inequalities of the Jensen, Cˇebyˇsev and Gru ̈ss Type. Springer Briefs in Mathematics. Springer, New York, 2012. xii+121 pp. ISBN: 978-1-4614-1520-6. Google Scholar
[20] S. S. Dragomir, Operator Inequalities of Ostrowski and Trapezoidal Type. Springer Briefs in Mathematics. Springer, New York, 2012. x+112 pp. ISBN: 978-1-4614-1778-1. Google Scholar
[21] S. S. Dragomir, Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces. Springer Briefs in Mathematics. Springer, 2013. x+120 pp. ISBN: 978-3-319-01447-0; 978-3-319-01448-7. Google Scholar
[22] S. S. Dragomir, M. V. Boldea and C. Bu ̧se, Norm inequalities of Cˇebyˇsev type for power series in Banach algebras, Preprint RGMIA Res. Rep. Coll. 16 (2013), Art. 73. Google Scholar
[23] S. S. Dragomir and B. Mond, On the superadditivity and monotonicity of Schwarz’s inequality in inner product spaces, Contributions, Macedonian Acad. of Sci and Arts 15 (2) (1994), 5–22. Google Scholar
[24] S. S. Dragomir and B. Mond, Some inequalities for Fourier coefficients in inner product spaces, Periodica Math. Hungarica 32 (3) (1995), 167–172. Google Scholar
[25] S. S. Dragomir, J. PeVcari c and J. S andor, The Chebyshev inequality in pre-Hilbertian spaces. II. Proceedings of the Third Symposium of Mathematics and its Applications (Timi soara, 1989), 75-78, Rom. Acad., Timi soara, 1990. MR1266442 (94m:46033) Google Scholar
[26] S. S. Dragomir and J. S andor, The Chebyshev inequality in pre-Hilbertian spaces. I. Proceedings of the Second Symposium of Mathematics and its Applications (Timi soara, 1987), 61-64, Res. Centre, Acad. SR Romania, Timi soara, 1988. MR1006000 (90k:46048). Google Scholar
[27] K. E. Gustafson and D. K. M. Rao, Numerical Range, Springer-Verlag, New York, Inc., 1997. Google Scholar
[28] S. Kurepa, Note on inequalities associated with Hermitian functionals, Glasnik Matematˇcki 3 (x23) (1968), 196–205. Google Scholar