Korean J. Math. Vol. 25 No. 3 (2017) pp.335-347
DOI: https://doi.org/10.11568/kjm.2017.25.3.335

Shifting and modulation for Fourier-Feynman transform of functionals in a generalized Fresnel class

Main Article Content

Byoung Soo Kim

Abstract

Time shifting and frequency shifting proprerties for the Fourier-Feynman transform of functionals in a generalized Fresnel class ${\mathcal F}_{A_1,A_2}$ are given. We discuss scaling and modulation proprerties for the Fourier-Feynman transform. These properties help us to obtain Fourier-Feynman transforms of new functionals from the Fourier-Feynman transforms of old functionals which we know their Fourier-Feynman transforms.


Article Details

Supporting Agencies

Seoul National University of Science and Technology

References

[1] J.M. Ahn, K.S. Chang, B.S. Kim and I. Yoo, Fourier-Feynman transform, convolution and first variation, Google Scholar

[2] Acta Math. Hungar. {bf 100} (2003), 215-235. Google Scholar

[3] S. Albeverio and R. Ho egh-Krohn, Mathematical theory of Feynman path integrals, Lecture Notes in Math. 523, Springer-Verlag, Berlin, 1976. Google Scholar

[4] M.D. Brue, A functional transform for Feynman integrals similar to the Fourier transform, Thesism Univ. of Minnesota, Minneapolis, 1972. Google Scholar

[5] R.H. Cameron and D.A. Storvick, An $L_2$ analytic Fourier-Feynman transform, Michigan Math. J. {bf 23} (1976), 1-30. Google Scholar

[6] R.H. Cameron and D.A. Storvick, Some Banach algebras of analytic Feynman integrable functionals, Analytic Functions Kozubnik 1979, Lecture Notes in Math. 798, Springer-Verlag, Berlin, 1980, 18-67. Google Scholar

[7] R.H. Cameron and D.A. Storvick, A new translation theorem for the analytic Feynman integral, Rev. Roum. Math. Pures et Appl. {bf 27} (1982), 937-944. Google Scholar

[8] K.S. Chang, B.S. Kim and I. Yoo, Analytic Fourier-Feynman transform and convolution of functionals on abstract Wiener space, Rocky Mountain J. Math. {bf 30} (2000), 823-842. Google Scholar

[9] T. Huffman, C. Park and D. Skoug, Analytic Fourier-Feynman transforms and convolution, Trans. Amer. Math. Soc. {bf 347} (1995), 661-673. Google Scholar

[10] T. Huffman, C. Park and D. Skoug, Convolutions and Fourier-Feynman transforms of functionals involving multiple integrals, Michigan Math. J. {bf 43} (1996), 247-261. Google Scholar

[11] G.W. Johnson and D.L. Skoug, An $L_p$ analytic Fourier-Feynman transform, Michigan Math. J. {bf 26} (1979), 103-127. Google Scholar

[12] G.W. Johnson and D.L. Skoug, Scale-invariant measurability in Wiener space, Pacific J. Math. {bf 83} (1979), 157-176. Google Scholar

[13] G. Kallianpur and C. Bromley, Generalized Feynman integrals using analytic continuation in several complex variables, in ``Stochastic Analysis and Application (ed. M.H.Pinsky)'', Marcel-Dekker Inc., New York, 1984, 219-267. Google Scholar

[14] G. Kallianpur, D. Kannan and R.L. Karandikar, Analytic and sequential Feynman integrals on abstract Wiener and Hilbert spaces and a Cameron-Martin formula, Ann. Inst. Henri. Poincar'e {bf 21} (1985), 323-361. Google Scholar

[15] Google Scholar

[16] B.S. Kim, Shifting and variational properties for Fourier-Feynman transform and convolution, J. Funct. Space. {bf 2015} (2015), 1-9. Google Scholar

[17] B.S. Kim, T.S. Song and I. Yoo, Analytic Fourier-Feynman transform and convolution of functionals in a generalized Fresnel class, J. Chungcheong Math. Soc. {bf 22} (2009), 481-495. Google Scholar

[18] P.V. O'Neil, Advanced engineering mathematics, 5th ed. Thomson (2003). Google Scholar

[19] I. Yoo and B.S. Kim, Fourier-Feynman transforms for functionals in a generalized Fresnel class, Commun. Korean. Math. Soc. {bf 22} (2007), 75-90. Google Scholar