Korean J. Math. Vol. 26 No. 1 (2018) pp.87-101
DOI: https://doi.org/10.11568/kjm.2018.26.1.87

On hyperholomorphic $F^{\alpha}_{\omega,G}(p,q,s)$ spaces of quaternion valued functions

Main Article Content

Alaa Kamal
Taha Ibrahim Yassen

Abstract

The purpose of this paper is to define a new class of hyperholomorphic functions spaces, which will be called $F^{\alpha}_{\omega,G}(p,q,s)$ type spaces. For this class, we characterize hyperholomorphic weighted $\alpha$-Bloch functions by functions belonging to $F^{\alpha}_{\omega,G}(p,q,s)$ spaces under some mild conditions. Moreover, we give some essential properties for the extended weighted little $\alpha$-Bloch spaces. Also, we give the characterization for the hyperholomorphic weighted Bloch space by the integral norms of $F^{\alpha}_{\omega,G}(p,q,s)$ spaces of hyperholomorphic functions. Finally, we will give the relation between the hyperholomorphic ${\mathcal{B}}^{\alpha}_{\omega,0}$ type spaces and the hyperholomorphic valued-functions space $F^{\alpha}_{\omega,G}(p,q,s)$.


Article Details

References

[1] R. Ablamowicz and B. Fauser, Mathematics of Clifford - a Maple package for Clifford and Graßmann algebras, Adv.Appl. Clifford Algebr. 15 (2) (2005), 157–181. Google Scholar

[2] R. Ablamowicz, Computations with Clifford and Graßmann algebras, Adv. Appl. Clifford Algebr. 19 (3-4) (2009), 499–545. Google Scholar

[3] S. Bernstein, Harmonic Qp spaces, Comput. Meth. Fun. Theory. 9 (1) (2009), 285–304. Google Scholar

[4] K.M. Dyakonov, Weighted Bloch spaces, Hp and BMOA, J. Lond. Math. Soc. II. Ser. 65 (2) (2002), 411–417. Google Scholar

[5] A. El-Sayed Ahmed, On weighted α-Besov spaces and α-Bloch spaces of quaternion-valued functions, N. Fun. Anal. Opt., 29(9-10)(2008), 1064-1081 Google Scholar

[6] A. El-Sayed Ahmed and S. Omran, Weighted classes of quaternion-valued functions, Banach J. Math. Anal. 6 (2) (2012), 180–191. Google Scholar

[7] A.El-SayedAhmed,A.KamalandT.I.Yassen,CharacterizationsforQK,ω(p,q) type functions by series expansions with Hadamard gaps, CUBO. A Math. J. 01 (2014), 81–93. Google Scholar

[8] A. El-Sayed Ahmed and Fatima Asiri, Characterizations of weighted Bloch Space by Qp,ω -type Spaces of quaternion-valued functions, J. Comput. Theor. Nanosc. 12 (2015), 4250–4255. Google Scholar

[9] A. Kamal, A. El-Sayed Ahmed and T. Yassen, Carleson measures and Hadamard products in some general analytic function spaces, J. Comput. Theor. Nsc. 12 (2015), 2227–2236 Google Scholar

[10] K. Gu ̈rlebeck, U. K ̈ahler, M. Shapiro, and L. M. Tovar, On Qp spaces of quaternion-valued functions, Complex Variables, 39 (1999), 115–135. Google Scholar

[11] K. Gu ̈rlebeck and A. El-Sayed Ahmed, Integral norms for hyperholomorphic Bloch-functions in the unit ball of IR3, Progress in Analysis (Begehr et al., eds.) Kluwer Academic, (2003), 253–263. Google Scholar

[12] K. Gu ̈rlebeck and A. El-Sayed Ahmed, On Bq Spaces of Hyperholomorphic Functions and the Bloch Space in R3, Finite or Infinite Dim. Com. Anal. Appl. (2004), 269–286. Google Scholar

[13] K. Gu ̈rlebeck, K. Habetha, and W. Spr ̈oßig, Holomorphic functions in the plane and n-dimensional space, Birkhau ̈ser Verlag, Basel (2008). Google Scholar

[14] H.R. Malonek, Quaternions in applied sciences, a historical perspective of a mathematical concept, 17th Inter.Conf. on the Appl. of Computer Science and Mathematics on Architecture and Civil Engineering, Weimar (2003). Google Scholar

[15] R. A. Rashwan, A. El-Sayed Ahmed and Alaa Kamal, Integral characterizations of weighted Bloch spaces and QK,ω(p,q) spaces, Math. tome. 51 (74) (2) (2009), 63–76. Google Scholar

[16] L. F. Res endis and L. M. Tovar, Besov-type characterizations for Quaternionic Bloch functions,In: Le Hung Son et al (Eds) finite or infinite complex Analysis and its applications, Adv. Complex Analysis and applications, (Boston MA: Kluwer Academic Publishers) (2004), 207-220. Google Scholar

[17] R. Zhao, On a general family of function spaces, Annal. Acad. Scien. Fennicae. Series A I. Math. Diss. 105. Helsinki: Suomalainen Tiedeakatemia, (1996), 1–56. Google Scholar