Sensitivity analysis of a shape control problem for the Navier--Stokes equations
Main Article Content
Abstract
Article Details
Supporting Agencies
References
[1] I. Babuska, The finite element method with Lagrange multipliers, Numer. Math., 20 (1973), 179–192. Google Scholar
[2] L. Cattabriga, Su un Problema al Contorno Relative al Sistema di Equazioni di Stokes, Rend. Sem. Mat. Univ. Padova, 31 (1961), 308–340. Google Scholar
[3] J. Cea, Conception optimale ou identification de formes, calcul rapide de la d eriv ee directionelle de la fonction cou^t, Math. Model. Numer. Anal., 20 (1986), 371-402. Google Scholar
[4] R. Correa and A. Seeger, Directional derivatives of a minimax function, Non-linear Analysis, Theory, Methods and Applications, 9 (1985), 13–22. Google Scholar
[5] M. Delfour and J. Zol esio, Differentiability of a minmax and application to optimal control and design problems. Part I, in Control Problems for Systems Described as Partial Differential Equations and Applications, I. Lasiecka and R. Triggiani (Eds.), Springer-Verlag, New York, 204-219, 1987. Google Scholar
[6] M. Delfour and J. Zol esio, Differentiability of a minmax and application to optimal control and design problems. Part II, in Control Problems for Systems Described as Partial Differential Equations and Applications, I. Lasiecka and R. Triggiani (Eds.), Springer-Verlag, New York, 220-229, 1987. Google Scholar
[7] M. Delfour and J. Zol esio, Shape sensitivity analysis via minmax differentiability, SIAM J. Control and Optim., 26 (1988), 834-862. Google Scholar
[8] M. Delfour and J. Zol esio, Anatomy of the shape Hessian, Ann. Matematica pura appl., IV (1991), 315-339. Google Scholar
[9] M. Delfour and J. Zol esio, Structure of shape derivatives for non-smooth domains, J. Func. Anal., 104 (1992), 215-339. Google Scholar
[10] V. Demyanov, Differentiability of a minimax function I, USSR Comput. Math. and Math. Phys., 8 (1968), 1–15. Google Scholar
[11] V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations, Springer-Verlag, Berlin, 1986. Google Scholar
[12] R. Glowinski and O. Pironneau, Toward the computation of minimum drag profiles in viscous laminar flow, Appl. Math. Model., 1 (1976), 58–66. Google Scholar
[13] M. Gunzburger and L. Hou, Treating inhomogeneous essential boundary condi- tions in finite element methods and the calculation of boundary stresses, SIAM J. Numer. Anal., 29 (1992), 390–424. Google Scholar
[14] M. Gunzburger, L. Hou and T. Svobodny, Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls, RAIRO Mod el. Math. Anal. Num er., 25 (1991), 711-748. Google Scholar
[15] M. Gunzburger and Honghul Kim, Existence of an optimal solution of a shape control problem for the stationary Navier-Stokes equations, SIAM J. Control Optim., 36 (1998), 895–909. Google Scholar
[16] Hongchul Kim, On the shape derivative in the domain inclusion, Kangweon- Kyungki Math. Jour., 10 (2002), 75–87. Google Scholar
[17] Hongchul Kim, Penalized approach and analysis of an optimal shape control problem for the stationary Naver-Stokes equations, J. Korean Math. Soc., 38 (2001), 1–23. Google Scholar
[18] V. Komkov, Sensitivity analysis in some engineering applications, in Lecture Notes in Math., 1086, V. Komkov (Ed.), Springer-Verlag, Berlin, 1–30, 1984. Google Scholar
[19] O. Ladyzhenskaya, The Mathematical Theory of Incompressible Viscous Flows, Gordon and Breach, New York, 1969. Google Scholar
[20] J. Marti, Introduction to Sobolev spaces and finite element solution of elliptic boundary value problems, Academic Press, London, 1986. Google Scholar
[21] O. Pironneau, On optimal design in fluid mechanics, J. Fluid Mech., 64 (1974), 97–110. Google Scholar
[22] O. Pironneau, Optimal Shape Design for Elliptic Systems, Springer, Berlin, 1984. Google Scholar
[23] B. Rousselet, Shape Design Sensitivity of a Membrane, J. Optim. Theory and Appl., 40 (1983), 595–623. Google Scholar
[24] J. Saut and R. Temam, Generic properties of Navier–Stokes equations: genericity with respect to the boundary values, Indiana Univ. Math. Jour., 29 (1980), 427–446. Google Scholar
[25] D. Serre, Equations de Navier-Stokes stationnaires avec donn ees peu r eguli`eres, Ann. Sci. Scuola Norm. Sup. Pisa, Ser., IV (1983), 543-559. Google Scholar
[26] J. Simon, Variations with respect to domain for Neumann conditions, in IFAC Control of Distributed Parameter Systems, Los Angeles, CA, 395–399, 1986. Google Scholar
[27] J. Simon, Differentiation on a Lipschitz manifold, in Lecture Notes in Control and Information Sciences 114, A. Bermudez (Ed.), Springer-Verlag, Berlin, 277– 283, 1987. Google Scholar
[28] J. Simon, Domain variation for drag in Stokes flow, in Lecture Notes in Control and Information Sciences, 159, X. Li and J. Yang (Eds.), Springer-Verlag, Berlin, 28–42, 1990. Google Scholar
[29] J. Sokolowski and J. Zol esio, Introduction to Shape Optimization: Shape Sensitivity Analysis, Springer-Verlag, Berlin, 1992. Google Scholar
[30] R. Temam, Navier–Stokes Equations, North-Holland, Amsterdam, 1979. Google Scholar
[31] J. Zol esio, The material derivative (or speed ) method for shape optimization, in Optimization of Distributed Parameter Structures, E. Haug and J. Cea (Eds.), Sijthoff and Noordhoff, Alphen aan den Rijn, 1005-1048, 1981. Google Scholar