Korean J. Math. Vol. 25 No. 3 (2017) pp.405-435
DOI: https://doi.org/10.11568/kjm.2017.25.3.405

Sensitivity analysis of a shape control problem for the Navier--Stokes equations

Main Article Content

Hongchul Kim

Abstract

We deal with a sensitivity analysis of an optimal shape control problem for the stationary Navier-Stokes system. A two-dimensional channel flow of an incompressible, viscous fluid is examined to determine the shape of a bump on a part of the boundary that minimizes the viscous drag. By using the material derivative method and adjoint variables for a shape sensitivity analysis, we derive the shape gradient of the design functional for the model problem.


Article Details

Supporting Agencies

This paper was supported in part by the Research Institute of Natural Science of Gangneung-Wonju National University.

References

[1] I. Babuska, The finite element method with Lagrange multipliers, Numer. Math., 20 (1973), 179–192. Google Scholar

[2] L. Cattabriga, Su un Problema al Contorno Relative al Sistema di Equazioni di Stokes, Rend. Sem. Mat. Univ. Padova, 31 (1961), 308–340. Google Scholar

[3] J. Cea, Conception optimale ou identification de formes, calcul rapide de la d eriv ee directionelle de la fonction cou^t, Math. Model. Numer. Anal., 20 (1986), 371-402. Google Scholar

[4] R. Correa and A. Seeger, Directional derivatives of a minimax function, Non-linear Analysis, Theory, Methods and Applications, 9 (1985), 13–22. Google Scholar

[5] M. Delfour and J. Zol esio, Differentiability of a minmax and application to optimal control and design problems. Part I, in Control Problems for Systems Described as Partial Differential Equations and Applications, I. Lasiecka and R. Triggiani (Eds.), Springer-Verlag, New York, 204-219, 1987. Google Scholar

[6] M. Delfour and J. Zol esio, Differentiability of a minmax and application to optimal control and design problems. Part II, in Control Problems for Systems Described as Partial Differential Equations and Applications, I. Lasiecka and R. Triggiani (Eds.), Springer-Verlag, New York, 220-229, 1987. Google Scholar

[7] M. Delfour and J. Zol esio, Shape sensitivity analysis via minmax differentiability, SIAM J. Control and Optim., 26 (1988), 834-862. Google Scholar

[8] M. Delfour and J. Zol esio, Anatomy of the shape Hessian, Ann. Matematica pura appl., IV (1991), 315-339. Google Scholar

[9] M. Delfour and J. Zol esio, Structure of shape derivatives for non-smooth domains, J. Func. Anal., 104 (1992), 215-339. Google Scholar

[10] V. Demyanov, Differentiability of a minimax function I, USSR Comput. Math. and Math. Phys., 8 (1968), 1–15. Google Scholar

[11] V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations, Springer-Verlag, Berlin, 1986. Google Scholar

[12] R. Glowinski and O. Pironneau, Toward the computation of minimum drag profiles in viscous laminar flow, Appl. Math. Model., 1 (1976), 58–66. Google Scholar

[13] M. Gunzburger and L. Hou, Treating inhomogeneous essential boundary condi- tions in finite element methods and the calculation of boundary stresses, SIAM J. Numer. Anal., 29 (1992), 390–424. Google Scholar

[14] M. Gunzburger, L. Hou and T. Svobodny, Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls, RAIRO Mod el. Math. Anal. Num er., 25 (1991), 711-748. Google Scholar

[15] M. Gunzburger and Honghul Kim, Existence of an optimal solution of a shape control problem for the stationary Navier-Stokes equations, SIAM J. Control Optim., 36 (1998), 895–909. Google Scholar

[16] Hongchul Kim, On the shape derivative in the domain inclusion, Kangweon- Kyungki Math. Jour., 10 (2002), 75–87. Google Scholar

[17] Hongchul Kim, Penalized approach and analysis of an optimal shape control problem for the stationary Naver-Stokes equations, J. Korean Math. Soc., 38 (2001), 1–23. Google Scholar

[18] V. Komkov, Sensitivity analysis in some engineering applications, in Lecture Notes in Math., 1086, V. Komkov (Ed.), Springer-Verlag, Berlin, 1–30, 1984. Google Scholar

[19] O. Ladyzhenskaya, The Mathematical Theory of Incompressible Viscous Flows, Gordon and Breach, New York, 1969. Google Scholar

[20] J. Marti, Introduction to Sobolev spaces and finite element solution of elliptic boundary value problems, Academic Press, London, 1986. Google Scholar

[21] O. Pironneau, On optimal design in fluid mechanics, J. Fluid Mech., 64 (1974), 97–110. Google Scholar

[22] O. Pironneau, Optimal Shape Design for Elliptic Systems, Springer, Berlin, 1984. Google Scholar

[23] B. Rousselet, Shape Design Sensitivity of a Membrane, J. Optim. Theory and Appl., 40 (1983), 595–623. Google Scholar

[24] J. Saut and R. Temam, Generic properties of Navier–Stokes equations: genericity with respect to the boundary values, Indiana Univ. Math. Jour., 29 (1980), 427–446. Google Scholar

[25] D. Serre, Equations de Navier-Stokes stationnaires avec donn ees peu r eguli`eres, Ann. Sci. Scuola Norm. Sup. Pisa, Ser., IV (1983), 543-559. Google Scholar

[26] J. Simon, Variations with respect to domain for Neumann conditions, in IFAC Control of Distributed Parameter Systems, Los Angeles, CA, 395–399, 1986. Google Scholar

[27] J. Simon, Differentiation on a Lipschitz manifold, in Lecture Notes in Control and Information Sciences 114, A. Bermudez (Ed.), Springer-Verlag, Berlin, 277– 283, 1987. Google Scholar

[28] J. Simon, Domain variation for drag in Stokes flow, in Lecture Notes in Control and Information Sciences, 159, X. Li and J. Yang (Eds.), Springer-Verlag, Berlin, 28–42, 1990. Google Scholar

[29] J. Sokolowski and J. Zol esio, Introduction to Shape Optimization: Shape Sensitivity Analysis, Springer-Verlag, Berlin, 1992. Google Scholar

[30] R. Temam, Navier–Stokes Equations, North-Holland, Amsterdam, 1979. Google Scholar

[31] J. Zol esio, The material derivative (or speed ) method for shape optimization, in Optimization of Distributed Parameter Structures, E. Haug and J. Cea (Eds.), Sijthoff and Noordhoff, Alphen aan den Rijn, 1005-1048, 1981. Google Scholar