Korean J. Math. Vol. 25 No. 4 (2017) pp.537-554
DOI: https://doi.org/10.11568/kjm.2017.25.4.537

Surfaces foliated by ellipses with constant Gaussian curvature in Euclidean 3-space

Main Article Content

Ahmed T. Ali
Fathi Mohamed Hamdoon

Abstract

In this paper, we study the surfaces foliated by ellipses in three dimensional Euclidean space E3. We prove the following results: \textbf{(1)} The surface foliated by an ellipse have constant Gaussian curvature K if and only if the surface is flat, i.e. K=0. \textbf{(2)} The surface foliated by an ellipse is a flat if and only if it is a part of generalized cylinder or part of generalized cone.



Article Details

References

[1] Ali A.T., Position vectors of general helices in Euclidean 3-space, Bull. Math. Anal. Appl. 3 (2) (2010), 198–205. Google Scholar

[2] Ali A.T., Position vectors of slant helices in Euclidean 3-space, J. Egyptian Math. Soc. 20 (1) (2012), 1–6. Google Scholar

[3] Delaunay C., Sur la surface de r evolution dont la courbure moyenne est constante, J. Math. Pure Appl. 6 (1841), 309-320. Google Scholar

[4] Enneper A., Ueber die cyclischen Fl ̈achen, Nach. K ̋onigl. Ges. d. Wisseensch. G ̋ottingen, Math. Phys. Kl (1866), 243–249. Google Scholar

[5] Enneper A., Die cyclischen Fl ̈achen, Z. Math. Phys. 14 (1869), 393–421. Google Scholar

[6] Lo pez R. Cyclic surfaces of constant Gauss curvature, Houston J. Math. 27 (4) (2001), 799-805. Google Scholar

[7] L opez R. On linear Weingarten surfaces, Int. J. Math. 19 (2008), 439-448. Google Scholar

[8] Lo pez R. Special Weingarten surfaces foliated by circles, Monatsh. Math. 154 (2008), 289-302. Google Scholar

[9] Nitsche J. C. C., Cyclic surfaces of constant mean curvature, Nachr. Akad. Wiss. Gottingen Math. Phys. II 1 (1989), 1–5. Google Scholar

[10] Riemann, B. U ̈ber die Fla ̈chen vom kleinsten Inhalt bei gegebener Begrenzung, Abh. K ̈onigl Ges. d. Wissensch. G ̈ottingen, Mathema. C1, 13 (1868), 329–333. Google Scholar