Construction of $\Gamma$-algebra and $\Gamma$-Lie admissible algebras
Main Article Content
Abstract
Article Details
References
[1] S. Chakraborty and A.C. Paul, On Jordan isomorphisms of 2-torsion free prime gamma rings, Novi Sad J. Math. 40 (2010), 1–5. Google Scholar
[2] W. E. Barnes, On the Γ-rings of Nobusawa, Pasific J. Math. 18 (1966), 411–422. Google Scholar
[3] B. Davvaz, R. M. Santilli and T. Vougiouklis, Algebra, Hyperalgebra and Lie-Santilli Theory, J. Gen. Lie Theory Appl. 9 (2) (2015), 231. Google Scholar
[4] J.E. Humphreys, Introduction to Lie algebras and representation theory, Second printing, revised. Graduate Texts in Mathematics, 9. Springer-Verlag, New York- Berlin, 1978. Google Scholar
[5] S. Kyuno, On prime Γ-rings, Pacific J. Math. 75 (1978), 185–190. Google Scholar
[6] J. Luh, On the theory of simple Γ-rings, Michigan Math. J. 16 (1969), 65–75. Google Scholar
[7] N. Nobusawa, On generalization of the ring theory, Osaka J. Math. 1 (1978), 185–190. Google Scholar
[8] D. O ̈zden, M.A. O ̈ztu ̈rk and Y.B. Jun, Permuting tri-derivations in prime and semi-prime gamma rings, Kyungpook Math. J. 46 (2006), 153–167. Google Scholar
[9] A.C. Paul and S. Uddin, On Artinian gamma rings, Aligarh Bull. Math. 28 (2009), 15–19. Google Scholar
[10] R.M. Santilli, An introduction to Lie-admissible algebras, Nuovo Cimento Suppl. (1) 6 (1968), 1225–1249. Google Scholar