Hausdorff operators on weighted Lorentz spaces
Main Article Content
Abstract
Article Details
Supporting Agencies
References
[1] M. A. Arin ̃o and B. Muckenhoupt, Maximal functions on classical Lorentz spaces and Hardy’s inequality with weights for non-increasing functions, Trans. Amer. Math. Soc. 320 (1990), 727–735. Google Scholar
[2] A . B enyi and T. Oh, Best constants for certain multilinear integral operators. J. Inequal. Appl., 2006, 1-12. Google Scholar
[3] C. Bennett and R. Sharpley, Interpolation of Operators, Pure and Applied Mathematics, 129, Academic Press, 1988. Google Scholar
[4] S. Boza and J. Soria, Norm estimates for the Hardy operator in terms of Bp weights, Proc. Amer. Math. Soc 145 (2017), 2455–2465. Google Scholar
[5] J. Chen, D. Fan and J. Li, Hausdorff operators on function spaces, Chin. Ann. Math. Ser. B 33 (2012), 537–556. Google Scholar
[6] J. Chen, D. Fan, X. Lin and J. Ruan, The fractional Hausdorff operator on Hardy spaces, Anal. Math. 42 (2016), 1–17. Google Scholar
[7] J. Chen, D. Fan and S. Wang, Hausdorff operators on Eulidean spaces, Appl. Math. J. Chinese Univ. Ser. B 28 (2013), 548–564. Google Scholar
[8] J. Chen, D. Fan and C. Zhang, Boundedness of Hausdorff operators on some product Hardy type spaces, Appl. Math. J. Chinese Univ. 27 (2012), 114–126. Google Scholar
[9] M. Carro, A. Garc ia del Amo and J. Soria, Weak type weights and normable Lorentz spaces, Proc. Amer. Math. Soc 124 (1996), 849-857. Google Scholar
[10] M. J. Carro and J. Soria, Weighted Lorentz spaces and the Hardy operator J. Funct. Anal. 112 (1993), 480–494. Google Scholar
[11] M. J. Carro and J. Soria, The Hardy-Littlewood maximal function and weighted Lorentz spaces, J. London Math. Soc. 55 (1997), 146–158. Google Scholar
[12] M. J. Carro, J. A. Raposo and J. Soria, Recent developements in the theory of Lorentz spaces and weighted inequalities, Mem. Amer. Math. Soc. 187, 2007. Google Scholar
[13] P. Dr abek, H. P. Heinig and A. Kufner, Higher dimensional Hardy inequality, Internat. Ser. Numer. Math. 123 (1997), 3-16. Google Scholar
[14] Z. Fu, L. Grafakos, S. Lu, et al., Sharp bounds for m-linear Hardy and Hilbert operators, Houston J. Math. 38 (2012), 225–244. Google Scholar
[15] D. Fan and F. Zhao, Multilinear fractional Hausdorff operators, Acta Math. Sin., Engl. Ser. 30 (2014), 1407–1421. Google Scholar
[16] J. H. Guo, L. J. Sun and F. Y. Zhao, Hausdorff Operators on the Heisenberg Group, Acta Math. Sin. (Engl. Ser.) 31 (2015), 1703–1714 . Google Scholar
[17] G. Gao and F. Zhao, Sharp weak bounds for a class of Hausdorff operator, Anal. Math. 41 (2015), 163–173. Google Scholar
[18] R. A. Hunt, On L(p, q) spaces, Enseignement Math. 12 (1966), 249–276. Google Scholar
[19] W. A. Hurwitz and L. L. Silverman, The consistency and equivalence of certain definitions of summabilities, Trans. Amer. Math. Soc. 18 (1917), 1–20. Google Scholar
[20] A. Kamin ska, L. Maligranda, Order convexity and concavity of Lorentz spaces Lp,w, 0 < p < , Studia Math. 160 (2004), 267-286. Google Scholar
[21] A. Lerner and E. Liflyand, Multidimensional Hausdorff operators on the real Hardy spaces, J. Austral. Math. Soc. 83 (2007), 79–86. Google Scholar
[22] H. Li and A. Kamin ska, Boundedness and compactness of Hardy operator on Lorentz-type spaces, Math. Nachr., DOI 10.1002/mana.201600049. Google Scholar
[23] E. Liflyand, Hausdorff operators on Hardy Spaces, Eurasian Math. J. 4 (2013), 101–141. Google Scholar
[24] E. Liflyand and A. Miyachi, Boundedness of the Hausdorff operators in Hp spaces, 0 < p < 1, Studia Math. 194 (2009), 279–292. Google Scholar
[25] E. Liflyand and F. M oricz, The Hausdorff operator is bounded on real H1 space, Proc. Amer. Math. Soc. 128 (2000), 1391-1396. Google Scholar
[26] S. Lu, D. Yan and F. Zhao, Sharp bounds for Hardy type operators on higher-dimensional product spaces, J. Inequal. Appl. 2013, 1–11. Google Scholar
[27] B. Opic and A. Kufner, Hardy-type Inequalities, Pitman Research Notes in Mathematics Series, vol. 219, Longman Group UK Limited, London, 1990. Google Scholar
[28] J. Ruan and D. Fan, Hausdorff operators on the power weighted Hardy spaces, J. Math. Anal. Appl. 433 (2016), 31–48. Google Scholar
[29] J. Ruan and D. Fan, Hausdorff operators on the weighted Herz-type Hardy spaces, Math. Inequal. Appl. 19 (2016), 565–587. Google Scholar
[30] J. Ruan and D. Fan, Hausdorff type operators on the power weighted Hardy spaces, Math. Nachr., 2017, 00:1-14. https://doi.org/10.1002/mana.201600257. Google Scholar
[31] J. Ruan, D. Fan and Q. Wu, Weighted Herz space estimates for Hausdorff operators on the Heisenberg group, Banach J. Math. Appl. 11 (2017), 513–535. Google Scholar
[32] E. Sawyer, Boundedness of classical operators on classical Lorentz spaces, Studia Math. 96 (1990), 145–158. Google Scholar
[33] J. Soria, Lorentz spaces of weak-type, Quart. J. Math. Oxford Ser. 49 (1998), 93–103. Google Scholar
[34] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, vol. 43 of Princeton Mathematical Series, Princeton University Press, Princeton, 1993. Google Scholar
[35] S. Thangavelu, Harmonic analysis on the Heisenberg group, Progr. Math., vol. 159, Birkh¡§auser, Boston, 1998. Google Scholar
[36] X. Wu and J. Chen, Best constant for Hausdorff operators on n-dimensional product spaces, Sci. China Math. 57 (2014), 569–578. Google Scholar
[37] Q. Wu and Z. Fu, Sharp estimates for the Hardy operator on the Heisenberg group, Front. Math. China 11 (2016), 155–172. Google Scholar
[38] F. Zhao, Z. Fu and S. Lu, Endpoint estimates for n-dimensional Hardy operators and their commutators, Sci. China Math. 55 (2012), 1977–1990. Google Scholar