Shifting and modulation for the convolution product of functionals in a generalized Fresnel class
Main Article Content
Abstract
Article Details
Supporting Agencies
References
[1] J.M. Ahn, K.S. Chang, B.S. Kim and I. Yoo, Fourier-Feynman transform, convolution and first variation, Acta Math. Hungar. 100 (2003), 215–235. Google Scholar
[2] S. Albeverio and R. Høegh-Krohn, Mathematical theory of Feynman path integrals, Lecture Notes in Math. 523, Springer-Verlag, Berlin, 1976. Google Scholar
[3] R.H. Cameron and D.A. Storvick, Some Banach algebras of analytic Feynman integrable functionals, in Analytic Functions (Kozubnik, 1979), Lecture Notes in Math. 798, Springer-Verlag, (1980), 18–67. Google Scholar
[4] K.S. Chang, B.S. Kim and I. Yoo, Analytic Fourier-Feynman transform and convolution of functionals on abstract Wiener space, Rocky Mountain J. Math. 30 (2000), 823–842. Google Scholar
[5] T. Huffman, C. Park and D. Skoug, Analytic Fourier-Feynman transforms and convolution, Trans. Amer. Math. Soc. 347 (1995), 661–673. Google Scholar
[6] T. Huffman, C. Park and D. Skoug, Convolutions and Fourier-Feynman transforms of functionals involving multiple integrals, Michigan Math. J. 43 (1996), 247–261. Google Scholar
[7] G.W. Johnson and D.L. Skoug, Scale-invariant measurability in Wiener space, Pacific J. Math. 83 (1979), 157–176. Google Scholar
[8] G. Kallianpur and C. Bromley, Generalized Feynman integrals using analytic continuation in several complex variables, in “Stochastic Analysis and Applica- tion (ed. M.H.Pinsky)" , Marcel-Dekker Inc., New York, 1984. Google Scholar
[9] G. Kallianpur, D. Kannan and R.L. Karandikar, Analytic and sequential Feynman integrals on abstract Wiener and Hilbert spaces and a Cameron-Martin formula, Ann. Inst. Henri. Poincar e 21 (1985), 323-361. Google Scholar
[10] B.S. Kim, Shifting and variational properties for Fourier-Feynman transform and convolution, J. Funct. Space. 2015 (2015), 1–9. Google Scholar
[11] B.S. Kim, Shifting and modulation for Fourier-Feynman transform of functionals in a generalized Fresnel class, Korean J. Math. 25 (2017), 335–247. Google Scholar
[12] B.S. Kim, T.S. Song and I.Yoo, Analytic Fourier-Feynman transform and convolution in a generalized Fresnel class, J. Chungcheong Math. Soc. 22 (2009), 481–495. Google Scholar
[13] P.V. O’Neil, Advanced engineering mathematics, 5th ed. Thomson (2003). Google Scholar
[14] I. Yoo, Convolution and the Fourier-Wiener transform on abstract Wiener space, Rocky Mountain J. Math. 25 (1995), 1577–1587. Google Scholar
[15] I. Yoo and B.S. Kim, Fourier-Feynman transforms for functionals in a generalized Fresnel class, Commun. Korean Math. Soc. 22 (2007), 75–90. Google Scholar