Lattice ordered soft near rings
Main Article Content
Abstract
Article Details
References
[1] H. Aktas and N. C. a ̆gman, Soft sets and soft groups, Inform. Sci. 177 (2007) 2726–2735. Google Scholar
[2] M. I. Ali, A note on soft sets, rough sets and fuzzy soft sets, Comput. Math. Appl. 11 (2011) 3329–3332. Google Scholar
[3] M. I. Ali, F. Feng, X. Liu, W. K. Min and M. Shabir, On some new operations in soft set theory, Comput. Math. Appl. 57 (2009) 1547–1553. Google Scholar
[4] M. I. Ali, T. Mahmood, M. M. Rehman and M. F. Aslam, On lattice ordered soft sets, Appl Soft Comput. 36 (2015) 499–505. Google Scholar
[5] M. Aslam and M. Qurashi, Some contributions to soft groups, Annals of Fuzzy Math. and Infor. 4 (2012) 177–195. Google Scholar
[6] A. O. Atagu ̈n and A. Sezgin, Soft substructures of rings, fields and modules, Comput. Math. Appl. 61 (2011) 592–601. Google Scholar
[7] G. Birkhoff, Lattice theory, American Mathematical Socity (1967). Google Scholar
[8] F. Feng, Y. B. Jun and X. Zhao, Soft semirings, Comput. Math. Appl. 56 (2008) 2621–2628. Google Scholar
[9] F. Feng, C. Li, B. Davvaz and M. I. Ali, Soft sets combined with fuzzy sets and rough sets: a tentative approach, Soft Computing 14 (2010) 899–911 Google Scholar
[10] F. Ta ̧sdemir, A. O. Atagu ̈n, H. Altndi ̧s, Different prime N-ideals and IFP N-ideals, Indian J. Pure Appl. Math. 44(4), 527–542, 2013. Google Scholar
[11] Y. B. Jun, Soft BCK/BCI-algebras, Comput. Math. Appl. 56 (2008) 1408–1413. Google Scholar
[12] G. J. Klir and T. A. Folger, Fuzzy sets, Uncertainty and Inform. Prentice-Hall 24 (1987) 141–160. Google Scholar
[13] X. Ma, Q. Liu, J. Zhan, A survey of decision making methods based on certain hybrid soft set models, Artificial Intelligence Review 47 (2017) 507–530. Google Scholar
[14] P. K. Maji, R. Biswas and A. R. Roy, Soft set theory, Comput. Math. Appl. 45 (2003) 555–562. Google Scholar
[15] P. K. Maji, A. R. Roy and R. Biswas, An Application of soft sets in a decision making problem, Comput. Math. Appl. 44 (2002) 1077–1083. Google Scholar
[16] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl. 37 (1999) 19–31. Google Scholar
[17] Z. Pawlak, Rough sets, Int. J. Inform. Comput. Sci. 11 (1982) 341–356. Google Scholar
[18] G. Pilz, Near-rings, N. Holl. Publ. Comp. Amst. New York-Oxford, 1983. Google Scholar
[19] A. Sezgin, A. O. Atagu ̈n and E. Ayg" un, A Note on soft near-rings and Idealistic soft near-rings, Comut. Math. Appl. 25 (2011) 53–68. Google Scholar
[20] A. Sezgin and A. O. Atagu ̈n, On operations of soft sets, Comput. Math. Appl. 61 (2011) 1457–1467. Google Scholar
[21] Q. M. Sun, Z. L. Zhang and J. Liu, Soft sets and soft modules, Lecture notes in Comput. Sci. 5009 (2008) 403–409. Google Scholar
[22] J. D. Yadav, Fuzzy soft near ring, MNK. Appl. 4 (2015) 94–101. Google Scholar
[23] C. F. Yang, A Note on soft set theory, Comput. Math. Appl. 56 (2008) 1899–1900. Google Scholar
[24] J. Zhan, Q. Liu and T. Herawan, A novel soft rough set: soft rough hemirings and its multicriteria group decision making, Applied Soft Computing 54 (2017) 393–402. Google Scholar
[25] J. Zhan, M. I. Ali and N. Mehmood, On a novel uncertain soft set model: Z-soft fuzzy rough set model and corresponding decision making methods, Applied Soft Computing 56 (2017) 446–457. Google Scholar
[26] J. Zhan, Q. Liu and B. Davvaz, A new rough set theory: rough soft hemirings, Journal of Intelligent & Fuzzy Systems 28 (2015) 1687–1697. Google Scholar
[27] L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965) 338–353. Google Scholar