Surfaces generated via the evolution of spherical image of a space curve
Main Article Content
Abstract
Article Details
References
[1] P. Pelce , Dynamics of Curved Fronts, Academic Press, New York, (1988). Google Scholar
[2] R.C. Brower et al., Geometrical models of interface evolution, Phys. Rev. A. 30 (1984), 3161–3174. Google Scholar
[3] R. E. Goldstein and D. M. Petrich, The Korteweg-de Vries hierarchy as dynamics of closed curves in the plane, Phys. Rev. Lett. 67 (1991), 3203–3206. Google Scholar
[4] K. Nakayama, H. Segur and M. Wadati, Integrability and the motion of curve, Phys. Rev. Lett. 69 (1992), 2603–2606. Google Scholar
[5] K. Nakayama, J. Hoppe and M. Wadati, On the level-set formulation of geometrical models, J. Phys. So. Japan. 64 (1995), 403–406. Google Scholar
[6] Takeya Tsurumi et al., Motion of curves specified by accelerations, Physics Letters A. 224 (1997), 253–263. Google Scholar
[7] D.Y. Kwon and F.C. Park, Evolution of inelastic plane curves, Appl. Math. Lett. 12 (1999), 115–119. Google Scholar
[8] D.Y. Kwon, F.C. Park and D.P. Chi, Inextensible flows of curves and developable surfaces, Appl. Math. Lett. 18 (2005), 1156–1162. Google Scholar
[9] Ahmad T. Ali and M.Turgut, Position vector of a timelike slant helix in Minkowski 3-Space, J. Math. Anal. Appl. 365 (2010), 559–569. Google Scholar
[10] Ahmad T. Ali, Position vectors of slant helices in Euclidean space, J. Egypt. Math. Soc. 20 (2012) 1–6. Google Scholar
[11] Ahmad T. Ali, New special curves and their spherical indicatrices, Global J. Adv. Res. Class. Mod. Geom. 1 (2012), 28–38. Google Scholar
[12] Murat Babaarslan et al., A note on Bertrand curves and constant slope surfaces according to Darboux frame, J. Adv. Math. Stud. 5 (2012) 87–96. Google Scholar
[13] S. Izumiya and N. Takeuchi, New special curves and developable surfaces, Turk. J. Math. 28 (2004), 153–163. Google Scholar
[14] S. Izumiya and N. Takeuchi, Generic properties of helices and Bertrand curves, J Geom. 74 (2002), 97–109. Google Scholar
[15] L. Kula and Y. Yayli, On slant helix and its spherical indicatrix, Appl. Math. Comput. 169 (2005), 600–607. Google Scholar
[16] L. Kula, N. Ekmekci, Y. Yayh. and K. I ̇larslan, Characterizations of slant helices in Euclidean 3-space, Turk J Math. 34 (2010) ,261–273. Google Scholar
[17] S. Yilmaz and M. Turgut, A new version of Bishop frame and an application to spherical images, J. Math. Anal. Appl. 371 (2010) ,764–776. Google Scholar
[18] E. Turhan and T. Ko ̈rpynar, New Approach for binormal spherical image in terms of inextensible flow in E3, Prespacetime Journal. 4 (2013), 342–355. Google Scholar
[19] E. Turhan and T. Ko ̈rpynar, Time evolution equation for surfaces generated via binormail spherical image in terms of inextensible flow, J. Dyn. Syst. Geom. Theor. 12 (2014), 145–157. Google Scholar
[20] L. P. Eisenhart, A treatise on the differential geometry of curves and surfaces, New York, Dover, (1960). Google Scholar
[21] S. K. Chung, A study on the spherical indicatrix of a space curve in E3, J. Korea Soc. Math. Educ. 20 (1982), 23–26. Google Scholar
[22] C. Rogers and W. K. Schief, Backlund and Darboux transformations geometry and modern application in soliton theory, Cambridge University press, Cam- bridge, (2002). Google Scholar