A note on nonlinear skew Lie triple derivation between Prime $\ast$-algebras
Main Article Content
Abstract
Recently, Li et al proved that $\Phi$ which satisfies the following condition on factor von Neumann algebras
$$\Phi([[A,B]_{*},C]_{*})=[[\Phi(A),B]_{*},C]_{*}+[[A,\Phi(B)]_{*},C]_{*}+[[A,B]_{*},\Phi(C)]_{*}$$
where $[A,B]_{*}=AB-BA^{*}$ for all $A,B\in\mathcal{A}$, is additive $\ast$-derivation. In this short note we show the additivity of $\Phi$ which satisfies the above condition on prime $\ast$-algebras.
Article Details
References
[1] Z. Bai and S. Du, The structure of non-linear Lie derivations on factor von Neumann algebras, Linear Algebra Appl. 436 (2012), 2701–2708. Google Scholar
[2] J. Cui and C.K. Li, Maps preserving product XY −Y X∗ on factor von Neumann algebras, Linear Algebra Appl. 431 (2009), 833–842. Google Scholar
[3] C. Li, F. Lu and X. Fang, Nonlinear ξ−Jordan ∗-derivations on von Neumann algebras, Linear and Multilinear Algebra. 62 (2014), 466–473. Google Scholar
[4] C. Li, F. Lu and X. Fang, Nonlinear mappings preserving product XY + Y X∗ on factor von Neumann algebras, Linear Algebra Appl. 438 (2013), 2339–2345. Google Scholar
[5] C. LI, F Zhao and Q. Chen, Nonlinear Skew Lie Triple Derivations between Factors, Acta Mathematica Sinica 32 (2016), 821–830. Google Scholar
[6] L. Moln ar, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), 229-234. Google Scholar
[7] A. Taghavi, V. Darvish and H. Rohi, Additivity of maps preserving products AP ± PA∗ on C∗-algebras, Mathematica Slovaca 67 (2017), 213–220. Google Scholar
[8] A. Taghavi, H. Rohi and V. Darvish, Non-linear ∗-Jordan derivations on von Neumann algebras, Linear Multilinear Algebra 64 (2016), 426–439. Google Scholar
[9] W. Yu and J. Zhang, Nonlinear ∗-Lie derivations on factor von Neumann algebras, Linear Algebra Appl. 437 (2012), 1979–1991. Google Scholar