Korean J. Math. Vol. 26 No. 3 (2018) pp.459-465
DOI: https://doi.org/10.11568/kjm.2018.26.3.459

A note on nonlinear skew Lie triple derivation between Prime -algebras

Main Article Content

Ali Taghavi
Mojtaba Nouri
Vahid Darvish

Abstract

Recently, Li et al proved that Φ which satisfies the following condition on factor von Neumann algebras
Φ([[A,B],C])=[[Φ(A),B],C]+[[A,Φ(B)],C]+[[A,B],Φ(C)]
where [A,B]=ABBA for all A,BA, is additive -derivation. In this short note we show the additivity of Φ which satisfies the above condition on prime -algebras.



Article Details

References

[1] Z. Bai and S. Du, The structure of non-linear Lie derivations on factor von Neumann algebras, Linear Algebra Appl. 436 (2012), 2701–2708. Google Scholar

[2] J. Cui and C.K. Li, Maps preserving product XY −Y X∗ on factor von Neumann algebras, Linear Algebra Appl. 431 (2009), 833–842. Google Scholar

[3] C. Li, F. Lu and X. Fang, Nonlinear ξ−Jordan ∗-derivations on von Neumann algebras, Linear and Multilinear Algebra. 62 (2014), 466–473. Google Scholar

[4] C. Li, F. Lu and X. Fang, Nonlinear mappings preserving product XY + Y X∗ on factor von Neumann algebras, Linear Algebra Appl. 438 (2013), 2339–2345. Google Scholar

[5] C. LI, F Zhao and Q. Chen, Nonlinear Skew Lie Triple Derivations between Factors, Acta Mathematica Sinica 32 (2016), 821–830. Google Scholar

[6] L. Moln ar, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), 229-234. Google Scholar

[7] A. Taghavi, V. Darvish and H. Rohi, Additivity of maps preserving products AP ± PA∗ on C∗-algebras, Mathematica Slovaca 67 (2017), 213–220. Google Scholar

[8] A. Taghavi, H. Rohi and V. Darvish, Non-linear ∗-Jordan derivations on von Neumann algebras, Linear Multilinear Algebra 64 (2016), 426–439. Google Scholar

[9] W. Yu and J. Zhang, Nonlinear ∗-Lie derivations on factor von Neumann algebras, Linear Algebra Appl. 437 (2012), 1979–1991. Google Scholar