Korean J. Math. Vol. 26 No. 3 (2018) pp.467-481
DOI: https://doi.org/10.11568/kjm.2018.26.3.467

Postprocessing for the Raviart--Thomas mixed finite element approximation of the eigenvalue problem

Main Article Content

Kwang-Yeon Kim

Abstract

In this paper we present a postprocessing scheme for the Raviart--Thomas mixed finite element approximation of the second order elliptic eigenvalue problem. This scheme is carried out by solving a primal source problem on a higher order space, and thereby can improve the convergence rate of the eigenfunction and eigenvalue approximations. It is also used to compute a posteriori error estimates which are asymptotically exact for the L2 errors of the eigenfunctions. Some numerical results are provided to confirm the theoretical results.


Article Details

Supporting Agencies

This study is supported by 2015 Research Grant from Kangwon National Univer- sity (No. D1000412-01-01).

References

[1] A. Alonso., A. D. Russo, and V. Vampa, A posteriori error estimates in finite element acoustic analysis, J. Comput. Appl. Math. 117 (2000), 105–119. Google Scholar

[2] I. Babuska and J. Osborn, Eigenvalue Problems, in Handbook of Numerical Analysis II, Finite Element Methods (Part 1), edited by P.G. Lions and P.G. Ciarlet, North-Holland, Amsterdam, 1991, 641–787. Google Scholar

[3] D. Boffi, Finite element approximation of eigenvalue problems, Acta Numer. 19 (2010), 1–120. Google Scholar

[4] D. Boffi, F. Brezzi, and L. Gastaldi, On the convergence of eigenvalues for mixed formulations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25 (1997), 131–154 Google Scholar

[5] D. Boffi, F. Brezzi, and L. Gastaldi, On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form, Math. Comp. 69 (2000), 121–140. Google Scholar

[6] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer–Verlag, New York, 1991. Google Scholar

[7] H. Chen, S. Jia, and H. Xie, Postprocessing and higher order convergence for the mixed finite element approximations of the eigenvalue problem, Appl. Numer. Math. 61 (2011), 615–629. Google Scholar

[8] R. Dur an, L. Gastaldi, and C. Padra, A posteriori error estimators for mixed approximations of eigenvalue problems, Math. Models Methods Appl. Sci. 9 (1999), 1165-1178. Google Scholar

[9] F. Gardini, Mixed approximation of eigenvalue problems: a superconvergence result, ESAIM: M2AN 43 (2009), 853–865. Google Scholar

[10] P. Grisvard, Elliptic Problems in Non-Smooth Domains, Monographs and Studies in Mathematics 24, Pitman, Boston, 1985. Google Scholar

[11] S. Jia, H. Chen, and H. Xie, A posteriori error estimator for eigenvalue problems by mixed finite element method, Sci. China Math. 56 (2013), 887–900. Google Scholar

[12] J. Douglas Jr. and J. E. Roberts, Global estimates for mixed methods for second order elliptic equations, Math. Comp. 44 (1985), 39–52. Google Scholar

[13] Q. Lin and H. Xie, A superconvergence result for mixed finite element approximations of the eigenvalue problem, ESAIM: M2AN 46 (2012), 797–812. Google Scholar

[14] B. Mercier, J. Osborn, J. Rappaz, and P. A. Raviart, Eigenvalue approximation by mixed and hybrid methods, Math. Comp. 36 (1981), 427–453. Google Scholar

[15] A. Naga and Z. Zhang, Function value recovery and its application in eigenvalue problems, SIAM J. Numer. Anal. 50 (2012), 272–286. Google Scholar

[16] M. R. Racheva and A. B. Andreev, Superconvergence postprocessing for eigenvalues, Comp. Methods Appl. Math. 2 (2002), 171–185. Google Scholar

[17] J. Xu and A. Zhou, A two-grid discretization scheme for eigenvalue problems, Math. Comp. 70 (2001), 17–25. Google Scholar