Korean J. Math. Vol. 26 No. 4 (2018) pp.629-663
DOI: https://doi.org/10.11568/kjm.2018.26.4.629

Relative order and relative type based growth properties of iterated $p$ adic entire functions

Main Article Content

Tanmay Biswas

Abstract

Let us suppose that $\mathbb{K}$ be a complete ultrametric algebraically closed field and $\mathcal{A}\left( \mathbb{K}\right) $ be the $\mathbb{K}$-algebra of entire functions on $\mathbb{K}$. The main aim of this paper is to study some newly developed results related to the growth rates of iterated p-adic entire functions on the basis of their relative orders, relative type and relative weak type.



Article Details

References

[1] L. Bernal, Orden relative de crecimiento de funciones enteras, Collect. Math. 39 (1988), 209–229. Google Scholar

[2] J. P. Bezivin, K. Boussaf and A. Escassut, Zeros of the derivative of a p-adic meromorphic function, Bulletin des Sciences Math ematiques 136 (8) (2012), 839–847. Google Scholar

[3] J. P. Bezivin, K. Boussaf and A. Escassut, Some new and old results on zeros of the derivative of a p-adic meromorphic function, Contemp. Math., Amer. Math. Soc., 596 (2013), 23-30. Google Scholar

[4] K. Boussaf, A. Escassut and J. Ojeda, Primitives of p-adic meromorphic functions, Contemp. Math. 551 (2011), 51–56. Google Scholar

[5] K. Boussaf, A. Boutabaa and A. Escassut, Growth of p-adic entire functions and applications, Houston J. Math. 40 (3) (2014), 715–736. Google Scholar

[6] K. Boussaf, A. Escassut and J. Ojeda, Growth of complex and p-adic meromorphic functions and branched small functions, Bull. Belg. Math. Soc. - Simon Stevin, (2016). Google Scholar

[7] K. Boussaf, A. Boutabaa and A. Escassut, Order, Type and Cotype of Growth for p-Adic Entire Functions: A Survey with Additional Properties, p-Adic Numbers Ultrametric Anal. Appl. 8 (4) (2016), 280–297. Google Scholar

[8] A. Boutabaa, Theorie de Nevanlinna p-adique, Manuscripta Math. 67 (1990), 251–269. Google Scholar

[9] T., Biswas, Some growth properties of composite p-adic entire functions on the basis of their relative order and relative lower order, Asian-Eur. J. Math. Ac- cepted for publication (2018), https://doi.org/10.1142/S179355711950044X. Google Scholar

[10] T. Biswas, Some growth aspects of composite p-adic entire functions in the light of their (p, q)-th relative order and (p, q)-th relative type, J. Chungcheong Math. Soc. 3 (4) (2018), 429–460. Google Scholar

[11] A. Escassut, K. Boussaf and A. Boutabaa, Order, type and cotype of growth for p-adic entire functions, Sarajevo J. Math. 2 (25) (2016), 429–446. Google Scholar

[12] A. Escassut, Analytic Elements in p-adic Analysis, World Scientific Publishing Co. Pte. Ltd. Singapore, (1995). Google Scholar

[13] A. Escassut, p-adic Value Distribution, Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis, p. 42-138. Math. Monogr., Series 11. Science Press.(Beijing 2008). Google Scholar

[14] A. Escassut, Value Distribution in p-adic Analysis, World Scientific Publishing Co. Pte. Ltd. Singapore, (2015). Google Scholar

[15] A. Escassut and J. Ojeda, Exceptional values of p-adic analytic functions and derivative, Complex Var. Elliptic Equ., 56 (1-4) (2011), 263–269. Google Scholar

[16] A. Escassut and J. Ojeda, Branched values and quasi-exceptional values for p- adic mermorphic functions, Houston J. Math. 39 (3) (2013), 781–795. Google Scholar

[17] A. Escassut and J. Ojeda, The p-adic Hayman conjecture when n = 2, Complex Var. Elliptic Equ. 59 (10) (2014), 1452–1455. Google Scholar

[18] P. C. Hu and C. C. Yang, Meromorphic Functions over non-Archimedean Fields, Kluwer Academic Publishers, (2000). Google Scholar

[19] B. K. Lahiri and D. Banerjee, Relative fix points of entire functions, J. India Acad. Math. 19 (1) (1997), 87–97. Google Scholar

[20] A. Robert, A Course in P-Adic Analysis, Graduate texts. Springer (2000). Google Scholar

[21] J. Ojeda, On Hayman’s Conjecture over a p-adic field, Taiwanese J. Math., 12 (9) (2008), 2295–2313. Google Scholar