Korean J. Math. Vol. 26 No. 4 (2018) pp.709-727
DOI: https://doi.org/10.11568/kjm.2018.26.4.709

$\lambda^*$-closed sets and new separation axioms in Alexandroff spaces

Main Article Content

Amar Kumar Banerjee
Jagannath Pal

Abstract

Here we have studied the ideas of $g^*$-closed sets, $g\wedge_\tau $-sets and $\lambda^*$-closed sets and investigate some of their properties in the spaces of A. D. Alexandroff [1]. We have also studied some separation axioms like $ T_\frac{\omega}{4}, T_\frac{3\omega}{8}, T_\omega $ in Alexandroff spaces and also have introduced a new separation axiom namely $ T_\frac{5\omega}{8} $ axiom in this space.


Article Details

References

[1] Alexandroff, A. D., Additive set functions in abstract space, Mat. Sb. (N.S.) 8 (50) (1940), 307–348 (English, Russian Summary). Google Scholar

[2] A. Csa sza r, Generalized topology, generalized continuity, Acta Math. Hungar. 96 (2002), 351-357. Google Scholar

[3] A.Csa sza r , Generalized open sets in generalized topologies, Acta Math. Hungar. 106 (12) (2005), 53-66. Google Scholar

[4] Das, P. and Rashid, M.A., Certain separation axioms in a space, Korean J. Math. Sciences, 7 (2000), 81–93. Google Scholar

[5] Das, P. and Rashid, M.A., g∗-closed sets and a new separation axioms in Alexan- droff spaces, Archivum Mathematicum (BRNO), Tomus 39 (2003), 299–307. Google Scholar

[6] Dunham, W., T1 -spaces, Kyungpook Math. J. 17 (2) (1977), 161–169. 2 Google Scholar

[7] Kelley, J. L., General Topology, 2nd Ed., Graduate Text in Mathematics, 27 New York- Heidelberg- Berlin: Springer-Verlag, (1975). Google Scholar

[8] Lahiri B. K. and Das P., Semi-open set in a space, Sains Malaysiana 24 (4) (1995), 1–11. Google Scholar

[9] Levine, N., Generalised closed sets in topology, Rend. Cire. Mat. Palermo 19 (2) (1970), 89–96. Google Scholar

[10] M. S. Sarsak, Weak separation axioms in generalized topological spaces, Acta Math. Hungar., 131 (1-2) (2011),110–121. Google Scholar

[11] M. S. Sarsak, New separation axioms in generalized topological spaces, Acta Math. Hungar. 132 (3) (2011), 244–252. Google Scholar