Korean J. Math. Vol. 26 No. 4 (2018) pp.701-708
DOI: https://doi.org/10.11568/kjm.2018.26.4.701

Generalized normality in ring extensions involving amalgamated algebras

Main Article Content

Tae In Kwon
Hwankoo Kim

Abstract

In this paper, seminormality and $t$-closedness in ring extensions involving amalgamated algebras are studied. Let $R \subseteq T$ be a ring extension with ideals $I \subseteq J$, respectively such that $J$ is contained in the conductor of $R$ in $T$. Assume that $T$ is integral over $R$. Then it is shown that $(R \bowtie I, T \bowtie J)$ is a seminormal (resp., $t$-closed) pair if and only if $(R, T)$ is a seminormal (resp., $t$-closed) pair.


Article Details

Supporting Agencies

Changwon National University

References

[1] M. Chhiti and N. Mahdou, Some homological properties of amalgamated dupli- cation of a ring along an ideal, Bull. Iranian Math. Soc. 38 (2012), 507–515. Google Scholar

[2] M. D’Anna, C.A. Finocchiaro, and M. Fontana, Amalgamated algebras along an ideal, in: M. Fontana, S. Kabbaj, B. Olberding, I. Swanson, editors. Com- mutative Algebra and Its Applications. Berlin, Walter de Gruyter, 2009, pp. 241–252. Google Scholar

[3] M. D’Anna, C.A. Finocchiaro, and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra 214 (2010), 1633–1641. Google Scholar

[4] D. Dobbs and J. Shapiro, Normal pairs with zero-divisors, J. Algebra Appl. 10 (2011), 335–356. Google Scholar

[5] T.S. Long, Ring Extensions Involving Amalgamated Duplications, Ph.D. Thesis, George Mason university, 2014. Google Scholar

[6] N. Onoda, T. Sugatani, and K. Yoshida, Local quasinormality and closedness type criteria, Houston J. Math. 11 (1985), 247–256. Google Scholar

[7] G. Picavet and M. Picavet-L’Herniitte, Morphismes t-clos, Commun. Algebra, 21 (1993), 179–219. Google Scholar

[8] G. Picavet and M. Picavet-L’Herniitte, Anneaux t-clos, Commun. Algebra, 23 (1995), 2643–2677. Google Scholar

[9] M. Picavet-L’Hermitte, t-closed pairs, in: P.-J. Cahen, M. Fontana, E. Houston, S.-E. Kabbaj, editors. Commutative Ring Theory. Lect. Notes Pure Appl. Math. 185, New York, Dekker, 1996, pp. 401-415. Google Scholar

[10] R.G. Swan, On seminormality, J. Algebra 67 (1980), 210–229. Google Scholar

[11] S. Visweswaran, Some t-closed pairs, Commun. Algebra 29 (10) (2001), 4425–4435. Google Scholar