Generalized normality in ring extensions involving amalgamated algebras
Main Article Content
Abstract
Article Details
Supporting Agencies
References
[1] M. Chhiti and N. Mahdou, Some homological properties of amalgamated dupli- cation of a ring along an ideal, Bull. Iranian Math. Soc. 38 (2012), 507–515. Google Scholar
[2] M. D’Anna, C.A. Finocchiaro, and M. Fontana, Amalgamated algebras along an ideal, in: M. Fontana, S. Kabbaj, B. Olberding, I. Swanson, editors. Com- mutative Algebra and Its Applications. Berlin, Walter de Gruyter, 2009, pp. 241–252. Google Scholar
[3] M. D’Anna, C.A. Finocchiaro, and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra 214 (2010), 1633–1641. Google Scholar
[4] D. Dobbs and J. Shapiro, Normal pairs with zero-divisors, J. Algebra Appl. 10 (2011), 335–356. Google Scholar
[5] T.S. Long, Ring Extensions Involving Amalgamated Duplications, Ph.D. Thesis, George Mason university, 2014. Google Scholar
[6] N. Onoda, T. Sugatani, and K. Yoshida, Local quasinormality and closedness type criteria, Houston J. Math. 11 (1985), 247–256. Google Scholar
[7] G. Picavet and M. Picavet-L’Herniitte, Morphismes t-clos, Commun. Algebra, 21 (1993), 179–219. Google Scholar
[8] G. Picavet and M. Picavet-L’Herniitte, Anneaux t-clos, Commun. Algebra, 23 (1995), 2643–2677. Google Scholar
[9] M. Picavet-L’Hermitte, t-closed pairs, in: P.-J. Cahen, M. Fontana, E. Houston, S.-E. Kabbaj, editors. Commutative Ring Theory. Lect. Notes Pure Appl. Math. 185, New York, Dekker, 1996, pp. 401-415. Google Scholar
[10] R.G. Swan, On seminormality, J. Algebra 67 (1980), 210–229. Google Scholar
[11] S. Visweswaran, Some t-closed pairs, Commun. Algebra 29 (10) (2001), 4425–4435. Google Scholar