On a ring property related to nilradicals
Main Article Content
Abstract
Article Details
References
[1] D.D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), 2265–2272. Google Scholar
[2] R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), 3128–3140. Google Scholar
[3] E.P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470–473. Google Scholar
[4] G.F. Birkenmeier, H.E. Heatherly, and E.K. Lee, Completely prime ideals and associated radicals, Proc. Biennial Ohio State-Denison Conference 1992, edited by S. K. Jain and S. T. Rizvi, World Scientific, Singapore-New Jersey-London- Hong Kong (1993), 102–129. Google Scholar
[5] G.F. Birkenmeier, J.Y. Kim, and J.K. Park, Regularity conditions and the simplicity of prime factor rings, J. Pure Appl. Algebra 115 (1997), 213–230. Google Scholar
[6] V. Camillo and P.P. Nielsen, McCoy rings and zero-divisors, J. Pure Appl. Algebra 212 (2008), 599–615. Google Scholar
[7] V. Camillo, C.Y. Hong, N.K. Kim, Y. Lee, and P.P. Nielsen, Nilpotent ideals in polynomial and power series rings, Proc. Amer. Math. Soc. 138 (2010), 1607– 1619. Google Scholar
[8] K.R. Goodearl, Von Neumann Regular Rings, Pitman, London, 1979. Google Scholar
[9] S.U. Hwang, Y.C, Jeon, and Y. Lee, Structure and topological conditions of NI Google Scholar
[10] rings, J. Algebra 302 (2006), 186–199. Google Scholar
[11] Y.C. Jeon, H.K. Kim, Y. Lee, and J.S. Yoon, On weak Armendariz rings, Bull. Korean Math. Soc. 46 (2009), 135–146. Google Scholar
[12] N.K. Kim, K.H. Kim, and Y. Lee, Power series rings satisfying a zero divisor property, Comm. Algebra 34 (2006), 2205–2218. Google Scholar
[13] N.K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), 477–488. Google Scholar
[14] G. K ̈othe, Die Struktur der Ringe deren Restklassenring nach dem Radikal voll- standing irreduzibel ist, Math. Z. 32 (1930), 161–186. Google Scholar
[15] J. Krempa, Logical connections among some open problems concerning nil rings, Fund. Math. 76 (1972), 121–130. Google Scholar
[16] T.Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, New York, 1991. Google Scholar
[17] G. Marks, On 2-primal Ore extensions, Comm. Algebra 29 (2001), 2113–2123. Google Scholar
[18] G. Marks, A taxonomy of 2-primal rings, J. Algebra 266 (2003), 494–520. Google Scholar
[19] J.V. Neumann, On regular rings, Proceedngs of the National Academy of Sciences, 22 (1936), 707–713. Google Scholar
[20] M.B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), 14–17. Google Scholar
[21] L.H. Rowen, Ring Theory, Academic Press, San Diego, 1991. Google Scholar
[22] A.D. Sands, Radical and Morita contex, J. Algebra 24 (1973), 335–345. Google Scholar