Korean J. Math. Vol. 27 No. 3 (2019) pp.793-801
DOI: https://doi.org/10.11568/kjm.2019.27.3.793

Some recurrent properties of $LP$-Sasakian nanifolds

Main Article Content

Venkatesha .
Somashekhara. P.

Abstract

The aim of the present paper is to study certain recurrent properties of $LP$-Sasakian manifolds. Here we first describe Ricci $\eta$-recurrent $LP$-Sasakian manifolds. Further we study semi-generalized recurrent and three dimensional locally generalized concircularly $\phi$-recurrent $LP$-Sasakian manifolds and got interesting results.



Article Details

References

[1] C. S. Bagewadi, Venkatesha and N. S. Basavarajappa, On LP-Sasakian manifolds, Sci. Scr. A: Math. Sci. 16 (2008), 1–8. Google Scholar

[2] U. C. De and N. Guha, On generalized recurrent manifolds, J. Nat. Acad. Math. 9 (1991), 85–92. Google Scholar

[3] U. C. De, K. Matsumoto and A. A. Shaikh, On Lorentzian Para-Sasakian manifolds,Rendicontidel Seminaro Matemetico di Messina, Serien II, Supplemento al. 3 (1999), 149–156. Google Scholar

[4] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Interscience Publishers, 1 (1963), 293–301. Google Scholar

[5] K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Natur. Sci. 12 (1989), 151–156. Google Scholar

[6] I. Mihai, U. C. De and A. A. Shaikh, On Lorentzian Para-Sasakian manifolds, Korean J. Math. Sci. 6 (1999), 1–13. Google Scholar

[7] I. Mihai and R. Rosca, On Lorentzian Para-Sasakian manifolds, Classical Analysis, World Scientific Publ., Singapore, (1992), 155–169. Google Scholar

[8] C. Murathan, A. Yildiz, K. Arsian and U. C. De, On a class of Lorentzian Para-Sasakian manifolds, Proc. Estonian Acad. Sci.Phys. Math. 55 (4) (2006), 210–219. Google Scholar

[9] B. Prasad, On semi-generalized recurrent manifold, Mathematica Balkanica, New series 14 (2000), 72–82. Google Scholar

[10] H. S. Ruse, A classification of K4 space, London Mathematica Balkanical Soci- ety 53 (1951), 212–229. Google Scholar

[11] A. A. Shaikh and K. K. Baisha, Some results on LP -Sasakian manifolds, Bull. Math. Soc. Sci. Math., Roumanic Tome 49 (2) (2006), 193–205. Google Scholar

[12] V. Venkatesha, H.A. Kumara, D.M. Naik, On a class of generalized φ-recurrent Sasakian manifold, J. Egypt. Math. Soc. 27 (19) (2019), https://doi.org/10.1186/s42787-019-0022-0. Google Scholar

[13] A. G. Walker, On Ruses spaces of recurrent curvature, Proc. London Math. Soc. 52 (1976), 36–64. Google Scholar

[14] K. Yano and M. Kon, Structures of manifolds, World Scientific Publishing, Singapore 1984. Google Scholar