Korean J. Math. Vol. 27 No. 3 (2019) pp.803-817
DOI: https://doi.org/10.11568/kjm.2019.27.3.803

On Steffensen inequality in $p$-calculus

Main Article Content

Milad Yadollahzadeh
Mehdi Tourani
Gholamreza Karamali

Abstract

In this paper, we provide a new version of Steffensen inequality for $p$-calculus analogue in [17,18] which is a generalization of previous results. Also, the conditions for validity of reverse to $p$-Steffensen inequalities are given. Lastly, we will obtain a generalization of $p$-Steffensen inequality to the case of monotonic functions.


Article Details

References

[1] M.H. Annaby and Z.S. Mansour, q-Fractional Calculus and Equations, Springer- Verlag, Berlin Heidelberg, 2012. Google Scholar

[2] A. Aral, V. Gupta, and R.P. Agarwal, Applications of q-Calculus in Operator Theory, New York, Springer, 2013. Google Scholar

[3] J.A. Bergh, Generalization of Steffensen inequality, J. Math. Anal. Appl. 41, (1973), 187–191. Google Scholar

[4] P.S. Bullen, The Steffensen inequality, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 320-328, (1970), 59–63. Google Scholar

[5] P. Cerone, Special functions: approximations and bounds, Appl. Anal. Discrete Math. 1 (1) (2007), 72–91. Google Scholar

[6] B. Choczewski, I. Corovei, and A. Matkowska, On some functional equations related to Steffensen inequality, Ann. Univ. Paedagog. Crac. Stud. Math. 4 (2004), 31–37. Google Scholar

[7] T. Ernst, A comprehensive treatment of q-Calculus, Springer Science, Business Media, 2012. Google Scholar

[8] A.M. Fink, Steffensen type inequalities, Rocky Mountain J. Math. 12 (1982), 785–793. Google Scholar

[9] L. Gajek and A. Okolewski, Steffensen-type inequalites for order and record statistics, Ann. Univ. Mariae Curie-Sk lodowska, Sect. A 51 (1) (1997), 41–59. Google Scholar

[10] L. Gajek and A. Okolewski, Sharp bounds on moments of generalized order statistics, Metrika 52 (1) (2000), 27–43. Google Scholar

[11] L. Gajek and A. Okolewski, Improved Steffensen type bounds on expectations of record statistics, Statist. Probab. Lett. 55 (2) (2001), s205–212. Google Scholar

[12] H. Gauchman, Integral Inequalities in q-Calculus, Comp. Math. with Applics. 47 (2004), 281–300 Google Scholar

[13] F.H. Jackson, On q-functions and a certain difference operator, Trans. Roy Soc. Edin. 46 (1908), 253–281. Google Scholar

[14] V. Kac and P. Cheung, Quantum calculus, Springer Science, Business Media, 2002. Google Scholar

[15] E. Koelink, Eight lectures on quantum groups and q-special functions, Revista colombiana de Matematicas. 30 (1996), 93–180. Google Scholar

[16] T.H. Koornwinder and R.F. Swarttow, On q-analogues of the Fourier and Hankel transforms, Trans. Amer. Math. Soc. 333 (1992), 445–461. Google Scholar

[17] A. Neamaty and M. Tourani, The presentation of a new type of quantum calculus, Tbilisi Mathematical Journal-De Gruyter 10 (2) (2017) 15–28. Google Scholar

[18] A. Neamaty and M. Tourani, Some results on p-calculus, Tbilisi Mathematical Journal-De Gruyter 11 (1) (2018), 159–168. Google Scholar

[19] K.R. Parthasarathy, An introduction to quantum stochastic calculus, Springer Science, Business Media, 2012. Google Scholar

[20] J.F. Steffensen, On certain inequalities between mean values, and their application to actuarial problems, Skand. Aktuarietidskr. 1 (1918), 82–97. Google Scholar

[21] P.M. Vasic and J.E. Pecaric, Note on the Steffensen inequality, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 716-734, (1981), 80-82. Google Scholar