On Steffensen inequality in $p$-calculus
Main Article Content
Abstract
Article Details
References
[1] M.H. Annaby and Z.S. Mansour, q-Fractional Calculus and Equations, Springer- Verlag, Berlin Heidelberg, 2012. Google Scholar
[2] A. Aral, V. Gupta, and R.P. Agarwal, Applications of q-Calculus in Operator Theory, New York, Springer, 2013. Google Scholar
[3] J.A. Bergh, Generalization of Steffensen inequality, J. Math. Anal. Appl. 41, (1973), 187–191. Google Scholar
[4] P.S. Bullen, The Steffensen inequality, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 320-328, (1970), 59–63. Google Scholar
[5] P. Cerone, Special functions: approximations and bounds, Appl. Anal. Discrete Math. 1 (1) (2007), 72–91. Google Scholar
[6] B. Choczewski, I. Corovei, and A. Matkowska, On some functional equations related to Steffensen inequality, Ann. Univ. Paedagog. Crac. Stud. Math. 4 (2004), 31–37. Google Scholar
[7] T. Ernst, A comprehensive treatment of q-Calculus, Springer Science, Business Media, 2012. Google Scholar
[8] A.M. Fink, Steffensen type inequalities, Rocky Mountain J. Math. 12 (1982), 785–793. Google Scholar
[9] L. Gajek and A. Okolewski, Steffensen-type inequalites for order and record statistics, Ann. Univ. Mariae Curie-Sk lodowska, Sect. A 51 (1) (1997), 41–59. Google Scholar
[10] L. Gajek and A. Okolewski, Sharp bounds on moments of generalized order statistics, Metrika 52 (1) (2000), 27–43. Google Scholar
[11] L. Gajek and A. Okolewski, Improved Steffensen type bounds on expectations of record statistics, Statist. Probab. Lett. 55 (2) (2001), s205–212. Google Scholar
[12] H. Gauchman, Integral Inequalities in q-Calculus, Comp. Math. with Applics. 47 (2004), 281–300 Google Scholar
[13] F.H. Jackson, On q-functions and a certain difference operator, Trans. Roy Soc. Edin. 46 (1908), 253–281. Google Scholar
[14] V. Kac and P. Cheung, Quantum calculus, Springer Science, Business Media, 2002. Google Scholar
[15] E. Koelink, Eight lectures on quantum groups and q-special functions, Revista colombiana de Matematicas. 30 (1996), 93–180. Google Scholar
[16] T.H. Koornwinder and R.F. Swarttow, On q-analogues of the Fourier and Hankel transforms, Trans. Amer. Math. Soc. 333 (1992), 445–461. Google Scholar
[17] A. Neamaty and M. Tourani, The presentation of a new type of quantum calculus, Tbilisi Mathematical Journal-De Gruyter 10 (2) (2017) 15–28. Google Scholar
[18] A. Neamaty and M. Tourani, Some results on p-calculus, Tbilisi Mathematical Journal-De Gruyter 11 (1) (2018), 159–168. Google Scholar
[19] K.R. Parthasarathy, An introduction to quantum stochastic calculus, Springer Science, Business Media, 2012. Google Scholar
[20] J.F. Steffensen, On certain inequalities between mean values, and their application to actuarial problems, Skand. Aktuarietidskr. 1 (1918), 82–97. Google Scholar
[21] P.M. Vasic and J.E. Pecaric, Note on the Steffensen inequality, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 716-734, (1981), 80-82. Google Scholar