Korean J. Math. Vol. 27 No. 3 (2019) pp.819-830
DOI: https://doi.org/10.11568/kjm.2019.27.3.819

On the product of quasi-partial metric spaces

Main Article Content

Razieh Gharibi
Sedigheh Jahedi

Abstract

This paper is mainly concerned with the existence and uniqueness of fixed points of $f: X^{k} \longrightarrow X$, $k\in \Bbb{N}$, where $X$ is a quasi- partial metric space and mapping $f$ satisfies appropriate conditions. Results are also supported with relevant examples.


Article Details

References

[1] CD. Aliprantis and KC. Border, Infinite Dimensional Analysis: A Hitchhikers Guide, Springer, Heidelberg (1999). Google Scholar

[2] M. Arshad, A. Shoaib, and I. Beg, Fixed point of contractive dominated mappings on a closed ball in an ordered quasi partial metric space, Le Mathematiche 70 (2) (2015), 283–294. Google Scholar

[3] S. Banach , Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fundam. Math. 3, (1922), 133–181. (in French) Google Scholar

[4] DW. Boyd and JSW. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20, (1969), 458–464. Google Scholar

[5] C. Di Bari and P. Vetro, Common fixed points for ψ -contractions on partial metric spaces, Hacet. J. Math. Stat. 42 (6) (2013), 591–598. Google Scholar

[6] M. Edelstein, On fixed and periodic points under contractive mappings, J. Lond. Math. Soc. 37 (1962), 74–79. Google Scholar

[7] O. Ege, and I. Karaca, Banach fixed point theorem for digital images, J. Non- linear Sci. Appl 8 (3) (2015), 237–245. Google Scholar

[8] O. Ege, Complex valued rectangular b-metric spaces and an application to linear equations, J. Nonlinear Sci. Appl 8 (6) (2015), 1014–1021 . Google Scholar

[9] O. Ege, Complex valued Gb-metric spaces, Journal of Computational Analysis and Applications, 21(2), (2016), 363-368. Google Scholar

[10] O. Ege, Some fixed point theorems in Complex valued Gb - metric spaces, J. Nonlinear Convex A. 18 (11) (2017), 1997–2005. Google Scholar

[11] X. Fan, and Z. Wang, Some fixed point theorems in generalized quasi partial metric spaces, J. Nonlinear Sci. Appl 9 (2016), 1658–1674. Google Scholar

[12] A. Gupta and P. Gautam, Quasi-partial b-metric spaces and some related fixed point theorems, Fixed Point Theory Appl., (2015), DOI 10.1186/s13663-015- 0260-2. Google Scholar

[13] X. Huang, C. Zhu and X. Wen, Fixed point theorems for expanding mappings in partial metric spaces. An. St. Univ. Ovidius Constanta 20 (1) (2012), 213–224. Google Scholar

[14] E.Karapinar, I.M.Erhan and A.O ̈zturk, Fixed point theorems on quasi-partial metric spaces, Math. Comput. Model 57 (2013), 2442–2448. Google Scholar

[15] H.-P.A. Kunzi, Nonsymmetric distances and their associated topologies, about the origins of basic ideas in the area of asymmetric topology, Aull, CE, Lowen, R (eds.) Handb Hist. Topol. 3 (2001), 853–968. Google Scholar

[16] H.-P.A. Kunzi, H. Pajooheshb and M.P. Schellekens, Partial quasi-metrics, The-oret. Comput. Sci. 365 (2006), 237–246. Google Scholar

[17] S.G. Matthews, Partial metric topology, Proceedings of the 8th Summer Conference on Topology and its Applications, Ann. New York Acad. Sci. 728 (1994), 183–197. Google Scholar

[18] M. Pacurar, A multi-step iterative method for approximating fixed points of Presic-Kannan operators, Acta Math. Univ. Comenianae 79 (1) (2010), 77–88. Google Scholar

[19] S. B. Presic, Sur une classe dinequations aux differences finies et sur la convergence de certaines suites Publ. Inst. Math 5 (19) (1965), 75–78. Google Scholar

[20] N. Shahzad and O. Valero, A Nemytskii-Edelstein type fixed point theorem for partial metric spaces, Fixed Point Theory Appl (2015), DOI 10.1186/s13663- 015-0266-9. Google Scholar