Korean J. Math. Vol. 28 No. 3 (2020) pp.439-447
DOI: https://doi.org/10.11568/kjm.2020.28.3.439

Second classical Zariski topology on second spectrum of lattice modules

Main Article Content

Pradip Girase
Vandeo C Borkar
Narayan Phadatare

Abstract

Let M be a lattice module over a C-lattice L. Let Specs(M) be the collection of all second elements of M. In this paper, we consider a topology on Specs(M), called the second classical Zariski topology as a generalization of concepts in modules and investigate the interplay between the algebraic properties of a lattice module M and the topological properties of Specs(M). We investigate this topological space from the point of view of spectral spaces. We show that Specs(M) is always T0space and each finite irreducible closed subset of Specs(M) has a generic point.



Article Details

References

[1] F. Alarcon, D. D. Anderson and C. Jayaram, Some results on abstract commu- tative ideal theory, Period. Math. Hungar. 30 (1995) (1), 1–26. Google Scholar

[2] E. A. Al-Khouja, Maximal elements and prime elements in lattice modules, Dam- ascus Univ. Basic Sci. 19 (2003) (2), 9–21. Google Scholar

[3] H. Ansari-Toroghy and F. Farshadifar, The Zariski topology on the second spec- trum of a module, Algebra Colloq. 21 (2014) (4), 671–688. Google Scholar

[4] H. Ansari-Toroghy, S. Keyvani and F. Farshadifar, The Zariski topology on the second spectrum of a module(II), Bull. Malays. Math. Sci. Soc. 39 (2016) (3), 1089–1103. Google Scholar

[5] S. Ballal and V. Kharat, Zariski topology on lattice modules, Asian-Eur. J. Math. 8 (2015) (4), 1550066 (10 pp). Google Scholar

[6] V. Borkar, P. Girase and N. Phadatare, Classical Zariski topology on prime spectrum of lattice modules, Journal of Algebra and Related Topics 6 (2018) (2), 1–14. Google Scholar

[7] V. Borkar, P. Girase and N. Phadatare, Zariski second radical elements of lattice modules, Asian-Eur. J. Math., doi:10.1142/S1793557121500558. Google Scholar

[8] N. Bourbaki, Algebre Commutative, Chap 1-2, Hermann, Paris, 1961. Google Scholar

[9] N. Bourbaki, Elements of Mathematics, General topology, Part 1, Hermann, Paris; Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1966. Google Scholar

[10] F. Callialp, G. Ulucak and U. Tekir, On the Zariski topology over an L-Module M, Turkish J. Math. 41 (2017) (2), 326–336. Google Scholar

[11] P. Girase, V. Borkar and N. Phadatare, On the classical prime spectrum of lattice modules, Int. Elect. J. Algebra 25 (2019), 186–198. Google Scholar

[12] P. Girase, V. Borkar and N. Phadatare, Zariski prime radical elements of lattice modules, Southeast Asian Bull. Math. 44 (2020) (3), 335–344. Google Scholar

[13] M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969), 43–60. Google Scholar

[14] J. R. Munkres, Topology: a First Course, Prentice-Hall, Inc. Eglewood Cliffs, New Jersey, 1975. Google Scholar

[15] N. Phadatare, S. Ballal and V. Kharat, On the second spectrum of lattice modules, Discuss. Math. Gen. Algebra and Appl. 37 (2017) (1), 59–74. Google Scholar

[16] N. Phadatare and V. Kharat, On the second radical elements of lattice modules, Tbilisi Math. J. 11 (2018) (4), 165–173. Google Scholar

[17] N. K. Thakare and C. S. Manjarekar, Abstract spectral theory: Multiplicative lattices in which every character is contained in a unique maximal character, Algebra and its applications(New Delhi, 1981), Lecture Notes in Pure and Appl. Math., 91, Dekker, New York, (1984), 256–276. Google Scholar

[18] N. K. Thakare, C. S. Manjarekar and S. Maeda, Abstract spectral theory II:minimal characters and minimal spectrums of multiplicative lattices, Acta Sci. Math. (Szeged) 52 (1988) (1-2), 53–67. Google Scholar

[19] S. Yassemi, The dual notion of prime submodules, Arch. Math. (Brno), 37 (2001), 273–278. Google Scholar