Bounds of Hankel determinants for analytic function
Main Article Content
Abstract
Article Details
References
[1] T. Akyel and B. N. Ornek, Sharpened forms of the Generalized Schwarz inequality on the boundary, Proc. Indian Acad. Sci. (Math. Sci.), 126(1) (2016) 69-78. Google Scholar
[2] T. A. Azeroglu and B. N. Örnek, ¼ A re…ned Schwarz inequality on the boundary, Complex Variab. Elliptic Equa. 58 (2013) 571-577. Google Scholar
[3] H. P. Boas, Julius and Julia: Mastering the Art of the Schwarz lemma, Amer. Math. Monthly 117 (2010) 770-785. Google Scholar
[4] V. N. Dubinin, The Schwarz inequality on the boundary for functions regular in the disc, J. Math. Sci. 122 (2004) 3623-3629. Google Scholar
[5] G. M. Golusin, Geometric Theory of Functions of Complex Variable [in Russian], 2nd edn., Moscow 1966. Google Scholar
[6] I. S. Jack, Functions starlike and convex of order . J. London Math. Soc. 3 (1971) 469-474. Google Scholar
[7] M. Mateljevi´ c, Rigidity of holomorphic mappings & Schwarz and Jack lemma, DOI:10.13140/RG.2.2.34140.90249, In press. Google Scholar
[8] P. R. Mercer, Sharpened Versions of the Schwarz Lemma, Journal of Mathematical Analysis and Applications 205 (1997) 508-511. Google Scholar
[9] P. R. Mercer, Boundary Schwarz inequalities arising from Rogosinski’s lemma, Journal of Classical Analysis 12 (2018) 93-97. Google Scholar
[10] P. R. Mercer, An improved Schwarz Lemma at the boundary, Open Mathematics 16 (2018) 1140-1144. Google Scholar
[11] R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. 128 (2000) 3513-3517. Google Scholar
[12] B. N. Örnek, Sharpened forms of analytic functions concerned with Hankel determinant, Korean J. Math. 27(4) (2019), 1027-1041. Google Scholar
[13] B. N. Örnek and T. Düzenli, Boundary Analysis for the Derivative of Driving Point Impedance Functions, IEEE Transactions on Circuits and Systems II: Express Briefs 65(9) (2018) 1149-1153. Google Scholar
[14] B. N. Örnek and T. Düzenli, On Boundary Analysis for Derivative of Driving Point Impedance Functions and Its Circuit Applications, IET Circuits, Systems and Devices, 13(2) (2019), 145-152. Google Scholar
[15] Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin. 1992. Google Scholar
[16] Ch. Pommerenke, On the Hankel determinants of univalent functions, Mathematika, 14(1967), 108-112. Google Scholar
[17] J. Sokol and D. K. Thomas, The second Hankel determinant for alpha-convex functions, Lithuanian Mathematical Journal, DOI 10.1007/s10986-018-9397-0, In press. Google Scholar
[18] G. Szegö and M. Fekete, Eine Bemerkung Uber Ungerade Schlichte Funktionen, J. Lond. Math. Soc. 2(1933) 85-89. Google Scholar
[19] D. K. Thomas and J. W. Noonan, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc. 223 (1976) 337-346. Google Scholar