The forcing nonsplit domination number of a graph
Main Article Content
Abstract
A dominating set
Article Details
References
[1] H. Abdollahzadeh Ahangar and L. Pushpalatha, The forcing domination number of Hamiltonian Cubic graphs, International Journal of Mathematical Combinatorics 2 (2009), 53–57. Google Scholar
[2] D. Ali Mojdeh and N. Jafari Rad, On domination and its forcing in Mycielski’s graphs, Scientia Iranica 15 (2) (2008), 218–222. Google Scholar
[3] C. L. Armada, S. R. Canoy, Jr. and C. E. Go, Forcing subsets for γc-sets and γt-sets in the Lexicographic Product of graphs, European Journal of Pure And Applied Mathematics 12 (4) (2019), 1779–1786. Google Scholar
[4] G. Chartrand, H. Gavlas, R. C. Vandell and F. Harary, The forcing domination number of a graph, Journal of Combinatorial Mathematics and Combinatorial Computing 25 (1997), 161– 174. Google Scholar
[5] R. Davila and M. A. Henning, Total forcing versus total domination in Cubic graphs, Applied Mathematics and Computation, 354 (2019), 385–395. Google Scholar
[6] D. Ferrero, L. Hogben, F. H. J. Kenter and M. Young, The relationship between k-forcing and k-power domination, Discrete Mathematics 341 (6) (2018), 1789–1797. Google Scholar
[7] M. Hajian, M. A. Henning and N. Jafari Rad, A new lower bound on the domination number of a graph, Journal of combinatorial Optimization, doi.org/10.1007/s10878-019-00409-x. Google Scholar
[8] F. Harary, Graph Theory, Addison-Wesley, (1969). Google Scholar
[9] T. W. Haynes, S. T. Hedetnimi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Incorporated, New York, (1998). Google Scholar
[10] J. John, V. Mary Gleeta, The forcing monophonic hull number of a graph, International Journal of Mathematics Trends and Technology 3 (2) (2012), 43–46. Google Scholar
[11] J. John, S. Panchali, The forcing monophonic number of a graph, International Journal of Mathematical Archive 3 (3) (2012), 935–938. Google Scholar
[12] S. Kavitha, S. Robinson Chellathurai and J. John, On the forcing connected domination number of a graph, Journal of Discrete Mathematical Sciences and Cryptography 23 (3) (2017), 611–624. Google Scholar
[13] V. R. Kulli and B. Janakiram, The nonsplit domination number of a graph, Indian Journal of Pure and Applied Mathematics 31 (5) (2000), 545–550. Google Scholar
[14] C. Sivagnanam and M. P. Kulandaivel, Complementary connected domination number and connectivity of a graph, General Mathematics Notes 29 (2), (2015), 27–35. Google Scholar
[15] A. P. Santhakumaran and J. John, The upper edge geodetic number and the forcing edge geodetic number of a graph, Opuscula Mathematica 29 (4) (2009), 427–441. Google Scholar
[16] A. P. Santhakumaran and J. John, The forcing Steiner number of a graph, Discussiones Mathematicae Graph Theory, 31 (2011), 171–181. Google Scholar
[17] A. P. Santhakumaran and J. John, On the forcing geodetic and the forcing Steiner numbers of a graph, Discussiones Mathematicae Graph Theory 31 (2011), 611–624. Google Scholar
[18] T. Tamizh Chelvam and B. J. Prasad, Complementary connected domination number, International Journal of Management Systems 18 (2) (2002), 147–154. Google Scholar