On $I$ and $I^*$-Cauchy conditions in $C^*$-algebra valued metric spaces
Main Article Content
Abstract
The idea of $C^*$-algebra valued metric spaces was given by Ma, Jiang and Sun. In this paper we have studied the ideas of $I$-Cauchy and $I^*$-Cauchy sequences and their properties in such spaces and also we give the idea of $C^*$-algebra valued normed spaces.
Article Details
References
[1] M. Balacerzak, K. Dems, and A. Komisarki, Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. App. 328 (1) (2007), 715–729. Google Scholar
[2] A. K. Banerjee, and A. Banerjee, A note on I-convergence and I∗-convergence of sequences and nets in topological spaces, Mat. Vesnik. 67 (3) (2015), 212–221. Google Scholar
[3] A. K. Banerjee, and A. Dey, Metric spaces and complex Analysis, New Age International(P) Ltd Publishers, 2008. Google Scholar
[4] A. K. Banerjee, and R. Mondal, A note on convergence of double sequences in a topological space, Mat. Vesnik. 69 (2) (2017), 144–152. Google Scholar
[5] P. Das, and S. K. Ghosal, Some further result on I-Cauchy sequences and condition (AP), Comp. Math. Appl. 59 (2010), 2597–2600. Google Scholar
[6] P. Das, P. Kostyrko, W. Wilczynski, and P. Malik, I and I∗-convergence of double sequences, Math. Slovaca. 58 (5) (2008), 605–620. Google Scholar
[7] K. Dems, On I-Cauchy sequences, Real Anal. Exch. 30(1)(2004/2005), 123–128. Google Scholar
[8] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244. Google Scholar
[9] J. A. Fridy, On statistical convergence, Analysis 5 (1985), 301–313. Google Scholar
[10] P. Kostyrko, T. S al at, and W. Wilczyn ski, I-convergence, Real Analysis Exchange. 26 (2) (2000/2001), 669-686. Google Scholar
[11] C. Kuratowski, Topologie. I., PWN Warszawa, 1958. Google Scholar
[12] B. K. Lahiri, and P. Das, Further results on I-limit superior and I-limit inferior, Math. Commun. 8 (2003), 151–156. Google Scholar
[13] B. K. Lahiri, and P. Das, I and I∗-convergence in topological spaces, Math. Bohemica. 130 (2) (2005), 153–160. Google Scholar
[14] G. J. Murphy, C∗-Algebras and Operator Theory, Academic Press, London, 1990. Google Scholar
[15] Z. Ma, L. Jiang, and H. Sun, C∗-algebra-valued metric spaces and related fixed point theorems, Fixed Point Theory Appl. 206 (2014), 2014. Google Scholar
[16] A. Nabiev, S. Pehlivan, and M. Gu ̈rdal, On I-Cauchy sequences, Taiwanese J. Math. 12 (2) (2007), 569–576. Google Scholar
[17] T. S ala t, On statistically convergent sequences of real numbers, Math. Slovaca. 30 (1980), 139-150. Google Scholar
[18] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73–74. Google Scholar
[19] D. Turkoglo, M. Abuloha, and T. Abdeljawad, Some theorems in cone metric spaces, Journal of concrete and applicable mathematics. 10 (2012). Google Scholar