Bessel-Wright transform in the setting of quantum calculus
Main Article Content
Abstract
This work is devoted to the study of a $q$-harmonic analysis related to the $q$-analog of the Bessel-Wright integral transform [6]. We establish some important properties of this transform and we focalise our attention in studying the associated transmutation operator.
Article Details
References
[1] Bouzeffour F., Inversion formulas for q-Riemann-Liouville and q-Weyl transforms, J. Math. Anal. Appl. 336 (2007), 833–848. Google Scholar
[2] Berkak I., Loualid E.M. and Daher R., An extension of the Bessel–Wright transform in the class of Boehmians. Arab. J. Math. 9 (2020) , 271–280. https://doi.org/10.1007/s40065-019-0250-z. Google Scholar
[3] Dhaouadi L., On the q-Bessel Fourier Transform, Bulletin of Mathematical Analysis and Appli- cations 5 (2013), 42–60. Google Scholar
[4] Dhaouadia L., Binous W., Fitouhi A., Paley-Wiener theorem for the q-Bessel transformand associated q-sampling formula, Expo. Math. 27 (2009), 55–72. Google Scholar
[5] Dhaouadi L., Fitouhi A. and El Kamel J., Inequalities in q-Fourier Analysis, Journal of Inequal- ities in Pure and Applied Mathematics, 7 (2006), 171. Google Scholar
[6] Fitouhi A., Dhaouadi L. and Karoui I., On the Bessel–Wright Transform. Anal. Math. 45 (2019), 291–309. https://doi.org/10.1007/s10476-018-0659-1 Google Scholar
[7] Fitouhi A., Hamza M. and Bouzeffour F., The q-j Bessel function, J. Appr. Theory, 115 (2002), 144–166. Google Scholar
[8] Gasmi A. and Sifi M., The Bessel-Struve interwining operator on C and mean periodic functions, IJMMS 59 (2004), 3171–3185. Google Scholar
[9] Gasper G., Rahman M., Basic Hypergeometric Series Encyclopedia of Mathematics and its Application , second ed., vol. 35, Cambridge University Press, Cambridge, UK, (2004). Google Scholar
[10] Hardy G. H., Littlewood J. E., and Polya G., Inequalities, Cambridge University Press, New York (1934). Google Scholar
[11] Karoui I., Binous W., Fitouhi A., On the Bessel-Wright Operator and Transmutation with Applications. In: Kravchenko V., Sitnik S. (eds) Transmutation Operators and Applications. Trends in Mathematics. Birkh ̈auser, Cham (2020). https://doi.org/10.1007/978-3-030-35914- 0 18. Google Scholar
[12] Koornwinder T. H., Swarttouw R. F., On q-analogues of the Fourier and Hankel transforms, Trans. Amer. Math. Soc. 333 (1992), 445–461. Google Scholar
[13] Zayed A. I. , Handbook of Function and Generalized Function Transformations, Boca Raton. Fla. CRC Press (1996). Google Scholar