Korean J. Math.  Vol 27, No 4 (2019)  pp.843-860
DOI: https://doi.org/10.11568/kjm.2019.27.4.843

Some new estimates for exponentially $(\hbar,\mathfrak{m})$-convex functions via extended generalized fractional integral operators

Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor


In the article, we present several new Hermite-Hadamard and Hermite-Hadamard-Fej\'{e}r type inequalities for the exponentially $(\hbar,\mathfrak{m})$-convex functions via an extended generalized Mittag-Leffler function. As applications, some variants for certain typ e of fractional integral operators are established and some remarkable special cases of our results are also have been obtained.


convex function; exponentially convex function; exponentially (h;m)-convex function; generalized Mittag-Leffler function; generalized fractional integral operators; Hadamard-Fej´er inequality

Subject classification

26D15, 26D10, 90C23


Full Text:



Alirezaei. G.; Mathar. R., On exponentially concave functions and their impact in information theory, J. inform. Theory. Appl, 2018, 9, 5, 265-274. (Google Scholar)

M. U. Awan, M. A. Noor, and K. I. Noor, Hermite-Hadamard inequalities for exponentially convex functions, Appl. Math. Inf. Sci., 2018, 12(2), 405–409. (Google Scholar)

M. U. Awan, M. A. Noor, M. V. Mihai, K. I. Noor, and A. G. Khan, Some new bounds for Simpson’s rule involving special functions via harmonic h-convexity, J. Nonlinear Sci. Appl., 2017, 10(4), 1755–1766. (Google Scholar)

A. G. Azpeitia, Convex functions and the Hadamard inequality, Rev. Colombiana Mat., 1994, 28(1), 7–12. (Google Scholar)

S. N. Bernstein, Sur les fonctions absolument monotones, Acta Math. 1929, 52, 1-66. (Google Scholar)

G. Cristescu, M. A. Noor, K. I. Noor, and M. U. Awan, Some inequalities for functions having Orlicz-convexity, Appl. Math. Comput., 2016, 273, 226–236. (Google Scholar)

M. R. Delavar and S. S. Dragomir, On -convexity, Math. Inequal. Appl., 2017, 20(1), 203–216. (Google Scholar)

S. S. Dragomir, On some new inequalities of Hermite-Hadamard type for m-convex functions, Tamkang J. Math., 2002, 33(1), 55–65. (Google Scholar)

S. S. Dragomir and I. Gomm, Some Hermite-Hadamard type inequalities for functions whose exponentials are convex, Stud. Univ. Babe¸s-Bolyai Math., 2015, 60(4), 527¨C-534. (Google Scholar)

S. S. Dragomir and Gh. Toader, Some inequalities for m-convex functions, Studia Univ. Babe¸s-Bolyai Math., 1993, 38(1), 21–28. (Google Scholar)

C. P. Niculescu, Convexity according to the geometric mean, Math. Inequal. Appl., 2010, 3(2), 155–167. (Google Scholar)

J. Hadamard, ´Etude sur les propri´et´es des fonctions enti`eres et en particulier `dune fonction consid´er´ee par Riemann, J. Math. Pures Appl., 1893, 58, 171–215. (Google Scholar)

˙I. ˙ I¸scan, Hermite-Hadamard-Fej´er type inequalities for convex functions via fractional integrals, Stud. Univ. Babe¸s-Bolyai Math., 2015, 60(3), 355–366 (Google Scholar)

A. A. Kilbas and A. A. Koroleva, Integral transform with the extended generalized Mittag-Leffler function, Math. Model. Anal., 2006, 11(2), 173–186. (Google Scholar)

M. A. Latif, Estimates of Hermite-Hadamard inequality for twice differentiable harmonically-convex functions with applications, Punjab Univ. J. Math. 50, No. 1 (2018) 1-13. (Google Scholar)

C. P. Niculescu, Convexity according to means, Math. Inequal. Appl., 2003, 6(4), 571–579. (Google Scholar)

M. A. Noor, K. I. Noor, and S. Rashid, On exponentially r-convex functions and inequalities, Preprint. (Google Scholar)

M. E. ¨ Ozdemir, M. Avcı, and E. Set, On some inequalities of Hermite-Hadamard type via m-convexity, Appl. Math. Lett., 2010, 23(9), 1065–1070. (Google Scholar)

S. Pal and T. K. L. Wong., On exponentially concave functions and a new information geometry, Annals. Prob, 2018, 46(2), 1070-1113. (Google Scholar)

T. P. Prabhakar, A singular integral equation with a generalized Mittag Leffler function in the kernel, Yokohama Math. J., 1971, 19, 7–15. (Google Scholar)

G. Rahman, D. Baleanu, M. Al Qurashi, S. D. Purohit, S. Mubeen, and M. Arshad, The extended Mittag-Leffler function via fractional calculus, J. Nonlinear Sci. Appl., 2017, 10(8), 4244–4253. (Google Scholar)

S. Rashid, M. A. Noor, and K. I. Noor, Fractional exponentially m-convex functions and inequalities, Inter. J. Anal. Appl. 17(3)(2019), 464-478. (Google Scholar)

T. O. Salim and A. W. Faraj, A generalization of Mittag-Leffler function and integral operator associated with fractional calculus, J. Fract. Calc. Appl., 2012, 3(5), 1–13. (Google Scholar)

E. Set, A. O. Akdemir, and I. Mumcu, Hermite-Hadamard’s inequality and its extensions for conformable fractional integrals of any order > 0 (submitted)(2019). (Google Scholar)

H. M. Srivastava and ˇZ. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput., 2009, 211(1), 198–210. (Google Scholar)

Gh. Toader, Some generalizations of the convexity, in: Proceedings of the colloquium on approximation and optimization (Cluj-Napoca, 1985), 329–338, Univ. Cluj-Napoca, Cluj-Napoca, 1985. (Google Scholar)

M. Tomer, E. Set and M. Z. Sarikaya, Hermite Hadamard type Reimann-Liouville fractional integral inequalities for convex funtions, AIP Conference Proceedings 1726,020035 (2016). (Google Scholar)

S. Varoˇsanec, On h-convexity, J. Math. Anal. Appl., 2007, 326(1), 303-311. (Google Scholar)


  • There are currently no refbacks.

ISSN: 1976-8605 (Print), 2288-1433 (Online)

Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr