Korean J. Math. Vol. 27 No. 2 (2019) pp.505-514
DOI: https://doi.org/10.11568/kjm.2019.27.2.505

On estimation of uniform convergence of analytic functions by $(p,q)$-Bernstein operators

Main Article Content

M. Mursaleen
Faisal Khan
Mohd Saif
Abdul Hakim Khan

Abstract

In this paper we study the approximation properties of a continuous function by the sequence of $(p,q)$-Bernstein operators for $q>p>1$. We obtain bounds of {$(p,q)$-}Bernstein operators. Further we prove that if a continuous function admits an analytic continuation into the disk $\{z:\left\vert z\right\vert \leq \rho \}$, then $ B_{p,q}^{n}(g;z)\rightarrow g(z)$ ($n\rightarrow \infty $) uniformly on any compact set in the given disk $\{z:\left\vert z\right\vert \leq \rho \},$ ${ \rho >0}$.



Article Details

References

[1] T. Acar, (p,q)-generalization of Sz a sz-Mirakyan operators, Math. Methods Appl. Sci. 9 (10) (2016), 2685-2695. Google Scholar

[2] T. Acar, A. Aral and S.A. Mohiuddine, Approximation by bivariate (p,q)- Bernstein Kantorovich operators, Iranian Jour. Sci. Techn., Trans A: Science, 42 (2) (2016), 655–662. Google Scholar

[3] T. Acar and A. Mohiuddine, On Kantorovich modification of (p,q)-Baskakov operators, J. Inequal. Appl. (2016), 2016: 98. Google Scholar

[4] S.N. Bernstein, D emonstration du th eor`eme de Weierstrass fond ee sur la calcul des probabilit es, Commun. Soc. Math. Charkow S er. 13 (1912), 1-2. Google Scholar

[5] H. Bin Jebreen, M. Mursaleen and Ambreen Naaz, Approximation by quaternion (p, q)-Bernstein polynomials and Voronovskaja type result on compact disk, Adv. Difference Equ. 2018 (2018), 448. Google Scholar

[6] S.G. Gal, Approximation by complex q-Lorentz polynomial, q > 1, Mathematica (Cluj) 54(77) (1) (2012). Google Scholar

[7] U. Kadak, On weighted statistical convergence based on (p,q)-integers and related approximation theorems for functions of two variables, J. Math. Anal. Appl. 443 (2) (2016), 752–764. Google Scholar

[8] U. Kadak, Weighted statistical convergence based on generalized difference operator involving (p,q)-gamma function and its applications to approximation theorems, J. Math. Anal. Appl., 448 (2) (2017), 1633–1650. Google Scholar

[9] U. Kadak, V.N. Mishra and S. Pandey, Chlodowsky type generalization of (p, q)- Szasz operators involving Brenke type polynomials, Revista de la Real Academia de Ciencias Exactas, Fi`Isicas y Naturales. Serie A, Matema`Iticas (2017), DOI: 10.1007/s13398-017-0439-y. Google Scholar

[10] P.P. Korovkin, Convergence of linear positive operator in the space of contineous function. Dokl. Akad. Nauk. Russian. SSSR (N.S.) 90 (1953), 961–964. Google Scholar

[11] A. Lupas, A q-analogue of the Bernstein operators, seminar on numerical and statistical calculus, University of Cluj-Napoca (1987), 85–92. Google Scholar

[12] V.N. Mishra and S. Pandey, On Chlodowsky variant of (p,q)-Kantorovich– Stancu–Schurer operators, Int. J. Anal. Appl. 11 (1) (2016), 28–39. Google Scholar

[13] V.N. Mishra and S. Pandey, On (p,q) Baskakov–Durrmeyer–Stancu operators, Adv.Appl.Clifford Algebra 27 (2) (2017), 1633–1646. Google Scholar

[14] M. Mursaleen and M. Ahasan, The Dunkl generalization of Stancu type q-Sz asz- Mirakjan-Kantorovich operators and some approximation results, Carpathian J. Math., 34(3) (2018), 363-370. Google Scholar

[15] M. Mursaleen, K.J. Ansari and A. Khan, On (p, q)-analogue of Bernstein operators, Appl. Math. Comput. 266 (2015), 874–882. Erratum: Appl. Math. Comput. 278 (2016), 70–71. Google Scholar

[16] M. Mursaleen, F. Khan and A. Khan, Approximation by (p,q)-Lorentz polynomial on a compact disk, Complex. Anal. Oper. Theory, 10 (8) (2016), 1725–1740. Google Scholar

[17] M. Mursaleen, Md. Nasiruzzaman, F. Khan and A. Khan, (p, q)-analogue of di- vided difference and Bernstein operators, J. Nonlinear. Funct. Anal. 2017 (2017), Article ID 25. Google Scholar

[18] M. Mursaleen, Ambreen Naaz and Asif Khan, Improved approximation and error estimations by King type (p, q)-Szasz-Mirakjan-Kantorovich operators, Appl. Math. Comput. 348 (2019), 175–185. Google Scholar

[19] M. Mursaleen, S. Rahman and A.H. Alkhaldi, Convergence of iterates of q-Bernstein and (p,q)-Bernstein operators and the Kelisky-Rivlin type theorem, Filomat 32 (12) (2018), (to appear). Google Scholar

[20] S. Ostrovska, q-Bernstein polynomial of the Cauchy kernel, Appl. Math. Comput., 198 (1) (2008), 261–270. Google Scholar

[21] S. Ostrovska, q-Bernstein polynomial and their iterates, Jour. Approx. Theory 123 (2003), 232–255. Google Scholar

[22] G.M. Phillips, Bernstein polynomials based on the q-integers, Ann. Numer. Math. 4 (1997), 511–518. Google Scholar

[23] G.M. Phillips, A generalization of the Bernstein polynomial based on the q-integers. ANZIAMZ, 42 (2000), 79–86 . Google Scholar