Characterizing functions fixed by a weighted Berezin transform in the bidisc
Main Article Content
Abstract
For $c>-1$, let $\nu_{c}$ denote a weighted radial measure on $\mathbb{C}$ normalized so that $\nu_{c}(D)=1.$ For $c_1, c_2 >-1$ and $f \in L^{1}(D^{2},\ \nu_{c_1} \times \nu_{c_2})$, we define the weighted Berezin transform $B_{c_1,c_2}f$ on $D^2$ by
$$\big(B_{c_1, c_2}\big)f(z,w) = \int_{D}\int_{D} f\big( \varphi_{z}(x) , \varphi_{w}(y) \big)\ d\nu_{c_1}(x) d\nu_{c_2}(y).$$
This paper is about the space $M_{c_1, c_2}^{p}$ of function $f \in L^{p}(D^{2},\ \nu_{c_1} \times \nu_{c_2})$ satisfying $B_{c_1,c_2}f=f$ for $1 \le p< \infty$. We find the identity operator on $M_{c_1, c_2}^{p}$ by using invariant Laplacians and we characterize some special type of functions in $M_{c_1, c_2}^{p}$.
Article Details
References
[1] P. Ahern, M. Flores and W. Rudin, An invariant volume-mean-value property, J. Funct. Anal. 111 (1993) (2), 380–397. Google Scholar
[2] J.P Ferrier, Spectral Theory and Complex Analysis, North-Holland, 1973. Google Scholar
[3] H. Furstenberg, Boundaries of Riemannian symmetric spaces, Symmetric spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969–1970), pp. 359–377. Pure and Appl. Math., Vol. 8, Dekker, New York, 1972. Google Scholar
[4] J. Lee, Weighted Berezin transform in the polydisc, J. Math. Anal. Appl. 338 (2) (2008), 1489-1493. Google Scholar
[5] J. Lee, Some properties of the Berezin transform in the bidisc, Comm. Korean Math. Soc. 32 (3) (2017), 779–787. Google Scholar
[6] J. Lee, Some properties of the weighted Berezin transform in the unit disc and bidisc, Global Journal of Pure and Applied Mathematics, 14 (2) (2018), 275–283 Google Scholar
[7] W. Rudin, Function theory in the unit ball of Cn, Springer-Verlag, New York Inc., 1980. Google Scholar