Korean J. Math. Vol. 27 No. 2 (2019) pp.437-444
DOI: https://doi.org/10.11568/kjm.2019.27.2.437

Characterizing functions fixed by a weighted Berezin transform in the bidisc

Main Article Content

Jaesung Lee

Abstract

For c>1, let νc denote a weighted radial measure on C normalized so that νc(D)=1. For c1,c2>1 and fL1(D2, νc1×νc2), we define the weighted Berezin transform Bc1,c2f on D2 by
(Bc1,c2)f(z,w)=DDf(φz(x),φw(y)) dνc1(x)dνc2(y).
This paper is about the space Mc1,c2p of function fLp(D2, νc1×νc2) satisfying Bc1,c2f=f for 1p<. We find the identity operator on Mc1,c2p by using invariant Laplacians and we characterize some special type of functions in Mc1,c2p.



Article Details

References

[1] P. Ahern, M. Flores and W. Rudin, An invariant volume-mean-value property, J. Funct. Anal. 111 (1993) (2), 380–397. Google Scholar

[2] J.P Ferrier, Spectral Theory and Complex Analysis, North-Holland, 1973. Google Scholar

[3] H. Furstenberg, Boundaries of Riemannian symmetric spaces, Symmetric spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969–1970), pp. 359–377. Pure and Appl. Math., Vol. 8, Dekker, New York, 1972. Google Scholar

[4] J. Lee, Weighted Berezin transform in the polydisc, J. Math. Anal. Appl. 338 (2) (2008), 1489-1493. Google Scholar

[5] J. Lee, Some properties of the Berezin transform in the bidisc, Comm. Korean Math. Soc. 32 (3) (2017), 779–787. Google Scholar

[6] J. Lee, Some properties of the weighted Berezin transform in the unit disc and bidisc, Global Journal of Pure and Applied Mathematics, 14 (2) (2018), 275–283 Google Scholar

[7] W. Rudin, Function theory in the unit ball of Cn, Springer-Verlag, New York Inc., 1980. Google Scholar