Characterizing functions fixed by a weighted Berezin transform in the bidisc
Main Article Content
Abstract
For
This paper is about the space
Article Details
References
[1] P. Ahern, M. Flores and W. Rudin, An invariant volume-mean-value property, J. Funct. Anal. 111 (1993) (2), 380–397. Google Scholar
[2] J.P Ferrier, Spectral Theory and Complex Analysis, North-Holland, 1973. Google Scholar
[3] H. Furstenberg, Boundaries of Riemannian symmetric spaces, Symmetric spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969–1970), pp. 359–377. Pure and Appl. Math., Vol. 8, Dekker, New York, 1972. Google Scholar
[4] J. Lee, Weighted Berezin transform in the polydisc, J. Math. Anal. Appl. 338 (2) (2008), 1489-1493. Google Scholar
[5] J. Lee, Some properties of the Berezin transform in the bidisc, Comm. Korean Math. Soc. 32 (3) (2017), 779–787. Google Scholar
[6] J. Lee, Some properties of the weighted Berezin transform in the unit disc and bidisc, Global Journal of Pure and Applied Mathematics, 14 (2) (2018), 275–283 Google Scholar
[7] W. Rudin, Function theory in the unit ball of Cn, Springer-Verlag, New York Inc., 1980. Google Scholar