Korean J. Math. Vol. 27 No. 4 (2019) pp.899-927
DOI: https://doi.org/10.11568/kjm.2019.27.4.899

Some growth aspects of special type of differential polynomial generated by entire and meromorphic functions on the basis of their relative $\left( p,q\right) $-th orders

Main Article Content

Tanmay Biswas

Abstract

In this paper we establish some results depending on the comparative growth properties of composite entire and meromorphic functions using relative $\left( p,q\right) $-th order and relative $\left( p,q\right) $-th lower order where $p,q$\ are any two positive integers and that of a special type of differential polynomial generated by one of the factors.


Article Details

References

[1] L. Bernal-Gonzal ez, Crecimiento relativo de funciones enteras. Aportaciones al estudio de las funciones enteras con indice exponencial finito, Doctoral Thesis, 1984, Universidad de Sevilla, Spain. Google Scholar

[2] L. Bernal, Orden relative de crecimiento de funciones enteras , Collect. Math., 39 (1988), 209–229. Google Scholar

[3] W. Bergweiler, On the Nevanlinna characteristic of a composite function, Complex Variables Theory Appl. 10 (2-3) (1988), 225–236. Google Scholar

[4] W. Bergweiler, On the growth rate of composite meromorphic functions, Complex Variables Theory Appl. 14 (1-4) (1990), 187–196. Google Scholar

[5] S. S. Bhooshnurmath and K. S. L. N. Prasad, The value distribution of some differental polynomials, Bull. Cal. Math. Soc 101 (1) (2009), 55–62. Google Scholar

[6] L. Debnath, S. K. Datta, T. Biswas and A. Kar, Growth of meromorphic functions depending on (p,q)-th relative order, Facta Univ. Ser. Math. Inform. 31 (3) (2016), 691–705. Google Scholar

[7] S. K. Datta, T. Biswas and C. Biswas, Measure of growth ratios of composite entire and meromorphic functions with a focus on relative order, Int. J. Math. Sci. Eng. Appl. 8 (IV) (July, 2014), 207–218. Google Scholar

[8] W.K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford (1964). Google Scholar

[9] O. P. Juneja, G. P. Kapoor and S. K. Bajpai, On the (p,q)-order and lower (p,q)-order of an entire function, J. Reine Angew. Math., 282 (1976), 53–67. Google Scholar

[10] O. P. Juneja, G. P. Kapoor and S. K. Bajpai, On the (p,q)-type and lower (p,q)-type of an entire function, J. Reine Angew. Math., 290 (1977), 180–190. Google Scholar

[11] I. Laine, Nevanlinna Theory and Complex Differential Equations, De Gruyter, Berlin, 1993. Google Scholar

[12] L. M. S. Ruiz, S. K. Datta, T. Biswas and G. K. Mondal, On the (p,q)-th relative order oriented growth properties of entire functions, Ab- stract and Applied Analysis, Vol.2014, Article ID 826137, 8 pages, http://dx.doi.org/10.1155/2014/826137. Google Scholar

[13] X. Shen, J. Tu and H. Y. Xu, Complex oscillation of a second-order linear differential equation with entire coefficients of [p, q] − φ order, Adv. Difference Equ. 2014,2014: 200, 14 pages, http://www.advancesindifferenceequations.com/content/2014/1/200. Google Scholar

[14] D. Sato, On the rate of growth of entire functions of fast growth, Bull. Amer. Math. Soc. 69 (1963), 411–414. Google Scholar

[15] C. C. Yang and H. X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557. Kluwer Academic Publishers Group, Dor- drecht, 2003. Google Scholar

[16] L. Yang, Value distribution theory, Springer-Verlag, Berlin, 1993. Google Scholar

[17] G. Valiron, Lectures on the General Theory of Integral Functions, Chelsea Publishing Company, (1949). Google Scholar