Korean J. Math. Vol. 27 No. 4 (2019) pp.949-968
DOI: https://doi.org/10.11568/kjm.2019.27.4.949

Matrix transformations and compact operators on the binomial sequence spaces

Main Article Content

Mustafa Cemil Bişgin

Abstract

In this work, we characterize some matrix classes concerning the Binomial sequence spaces $b_{\infty}^{r,s}$ and $b_{p}^{r,s}$, where $1\leq p<\infty$. Moreover, by using the notion of Hausdorff measure of noncompactness, we characterize the class of compact matrix operators from $b_{0}^{r,s}$, $b_{c}^{r,s}$ and $b_{\infty}^{r,s}$ into $c_{0}$, $c$ and $\ell_{\infty}$, respectively.



Article Details

References

[1] Altay, B, Ba ̧sar, F., Some Euler sequence spaces of non-absolute type, Ukrainian Math. J. 57 (1) (2005), 1–17. Google Scholar

[2] Altay, B, Ba ̧sar, F, Mursaleen, M., On the Euler sequence spaces which include the spaces lp and l∞ I, Inform. Sci. 176 (10) (2006), 1450–1462. Google Scholar

[3] Altay, B, Polat, H., On some new Euler difference sequence spaces, Southeast Asian Bull. Math. 30 (2) (2006), 209–220. Google Scholar

[4] Ba ̧sar, F, Altay, B., On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J. 55(1)(2003), 136–147. Google Scholar

[5] Bi ̧sgin, M.C., The Binomial sequence spaces of nonabsolute type, J. Inequal. Appl., 2016:309, (2016), doi: 10.1186/s13660-016-1256-0. Google Scholar

[6] Bi ̧sgin, M.C., The Binomial sequence spaces which include the spaces lp and l∞ and Geometric Properties, J. Inequal. Appl., 2016:304, (2016), doi:10.1186/s13660-016-1252-4. Google Scholar

[7] Choudhary, B, Nanda, S, Functional Analysis with Applications, John Wiley & sons Inc., New Delhi (1989). Google Scholar

[8] Djolovi c, I, Malkowsky, E., Matrix transformations and compact operators on some new m-th order difference sequences, Appl. Math. Comput. 198 (2) (2008), 700-714. Google Scholar

[9] Djolovi c, I, Malkowsky, E., A note on compact operators on matrix domains, j. Math. Anal. Appl. 340 (1) (2008), 291-303. Google Scholar

[10] Jarrah, A, M, Malkowsky, E., Ordinary, absolute and strong summability and matrix transformation, Filomat. 17 (2003), 59–78. Google Scholar

[11] Kızmaz, H., On certain sequence spaces, Canad. Math. Bull. 24 (2) (1981), 169–176. Google Scholar

[12] Lorentz, G.G., A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167–190. Google Scholar

[13] Maddox, I. J., Elements of Functional Analysis, Cambridge University Press (2nd edition), (1988). Google Scholar

[14] Malkowsky, E, Rako cevi c, V., On matrix domains and triangels, Appl. Math. Comput. 189 (2) (2007), 1146-1163. Google Scholar

[15] Malkowsky, E, Rako cevi c, V., An introduction into the theory of sequence spaces measure of noncompactness, Zbornik Radova, Matemati cki Institut Sanu, Bel- grade. 9 (17) (2000), 143-234. Google Scholar

[16] Mursaleen, M, Ba ̧sar, F, Altay, B., On the Euler sequence spaces which include the spaces lp and l∞ II, Nonlinear Anal. 65 (3) (2006), 707–717. Google Scholar

[17] Mursaleen, M, Noman, A.K., Compactness by the Hausdorff measure of non- compactness, Nonlinear Anal. 73 (2010) (2010), 2541–2557. Google Scholar

[18] Mursaleen, M, Noman, A.K., The Hausdorff measure of noncompactness of matrix operators on some BK spaces, Oper. Matrices 5 (3) (2011), 473–486. Google Scholar

[19] Mursaleen, M, Noman, A.K., Compactness of matrix operators on some new difference sequence spaces, Lineer Algebra Appl. 436 (1) (2012), 41–52. Google Scholar

[20] Mursaleen, M, Noman, A.K., Applications of Hausdorff measure of noncompactness in the spaces of generalized means, Math. Ineq. Appl. 16 (2013) (2013), 207–220. Google Scholar

[21] Mursaleen, M, Noman, A.K., Hausdorff measure of noncompactness of certain matrix operators on the sequence spaces of generalized means, Jour. Math. Anal. Appl. 16 (2013) (2013), 207–220. Google Scholar

[22] Ng, P. -N, Lee, P. -Y., Ces`aro sequence spaces of non-absolute type, Comment. Math. (Prace Mat.) 20 (2) (1978), 429–433. Google Scholar

[23] Polat, H, Ba ̧sar, F., Some Euler spaces of difference sequences of order m, Acta Math. Sci. Ser. B, Engl. Ed. 27B (2) (2007), 254–266. Google Scholar

[24] Rako cevi c, V., Measures of non compactness and some applications, Filomat. 12 (1998), 87-120. Google Scholar

[25] Stieglitz, M, Tietz, H., Matrix transformationen von folgenr ̈aumen eine ergeb- nisu ̈bersicht, Math. Z. 154 (1977), 1–16. Google Scholar

[26] S ̧eng ̈onu ̈l, M, Ba ̧sar, F., Some new Ces`aro sequence spaces of non–absolute type which include the spaces c0 and c, Soochow J. Math. 31 (1) (2005), 107–119. Google Scholar