Sharpened forms of analytic functions concerned with Hankel determinant
Main Article Content
Abstract
Article Details
References
[1] T. Akyel and B. N. Ornek, Some Remarks on Schwarz lemma at the boundary, Filomat, 31 (13) (2017), 4139-4151. Google Scholar
[2] T. A. Azero˘glu and B. N. Ornek, ¨ A refined Schwarz inequality on the boundary, Complex Variables and Elliptic Equations 58 (2013), 571-577. Google Scholar
[3] H. P. Boas, Julius and Julia: Mastering the Art of the Schwarz lemma, Amer. Math. Monthly 117 (2010), 770-785. Google Scholar
[4] V. N. Dubinin, The Schwarz inequality on the boundary for functions regular in the disc, J. Math. Sci. 122 (2004), 3623-3629. Google Scholar
[5] G. M. Golusin, Geometric Theory of Functions of Complex Variable [in Russian], 2nd edn., Moscow 1966. Google Scholar
[6] I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc. 3 (1971), 469-474. Google Scholar
[7] M. Mateljevi´c, Rigidity of holomorphic mappings & Schwarz and Jack lemma, DOI:10.13140/RG.2.2.34140.90249, In press. Google Scholar
[8] P. R. Mercer, Sharpened Versions of the Schwarz Lemma, Journal of Mathematical Analysis and Applications 205 (1997), 508-511. Google Scholar
[9] P. R. Mercer, Boundary Schwarz inequalities arising from Rogosinski’s lemma, Journal of Classical Analysis 12 (2018), 93-97. Google Scholar
[10] P. R. Mercer, An improved Schwarz Lemma at the boundary, Open Mathematics 16 (2018), 1140-1144. Google Scholar
[11] R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. 128 (2000) 3513-3517. Google Scholar
[12] B. N. Ornek and T. D¨uzenli, Bound Estimates for the Derivative of Driving Point Impedance Functions, Filomat, 32(18) (2018), 6211-6218. Google Scholar
[13] B. N. Ornek and T. D¨uzenli, Boundary Analysis for the Derivative of Driving Point Impedance Functions, IEEE Transactions on Circuits and Systems II: Express Briefs, 65(9) (2018), 1149-1153. Google Scholar
[14] B. N. Ornek, ¨ Sharpened forms of the Schwarz lemma on the boundary, Bull. Korean Math. Soc. 50(6) (2013), 2053-2059. Google Scholar
[15] Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin. 1992. Google Scholar
[16] M. Fekete and G. Szeg¨o, Eine Bemerkung Uber Ungerade Schlichte Funktionen, J. Lond. Math. Soc., 2 (1933), 85-89. Google Scholar
[17] J. W. Noonan and D. K. Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc., 223 (1976), 337-346. Google Scholar
[18] O. Ahuja, M. Kasthuri, G. Murugusundaramoorthy and K. Vijaya, Upper bounds of second Hankel determinant for universally prestarlike functions, J. Korean Math. Soc., 55(5) (2018), 1019-1030. Google Scholar